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Collaborative tagging represents for the Web a potential way for organizing and sharing infor-
mation and for heightening the capabilities of existing search engines. However, because of the
lack of automatic methodologies for generating the tags and supporting the tagging activity,
many resources on the Web are deficient in tag information, and recommending opportune tags
is both a current open issue and an exciting challenge. This paper approaches the problem by
applying a combined set of techniques and tools (that uses tags, domain ontologies, keyphrase ex-
traction methods) thereby generating tags automatically. The proposed approach is implemented
in the PIRATES (Personalized Intelligent tag Recommender and Annotator TEStbed) frame-
work, a prototype system for personalized content retrieval, annotation, and classification. A case
study application is developed using a domain ontology for software engineering. C© 2010 Wiley
Periodicals, Inc.

1. INTRODUCTION

Given a document, identifying an automatic methodology that generates a
limited set of metadata (also called keywords, tags or keyphrases), which properly
describe the given content, represents an open issue and a stimulating challenge.

This request is strongly perceived on the Web, where the amount of user-
generated content and its steady growth rate exacerbate the information overload, the
disorientation, the cognitive overhead, and the difficulty both to retrieve interesting
documents and to classify them for future uses.
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As described in Ref. 1, traditionally this issue has been approached using
systems for vocabulary control (indexing languages, thesauri, more recently us-
ing also ontologies) and classification systems (hierarchical-enumerative systems,
faceted classification systems, taxonomies). These methodologies require dedicated
(and human) professionals: they provide construction rules for the classification,
then painstakingly read, digest, and react on the document content and finally add
manually metadata values. These values match both the content of the documents
themselves and the expectations and slant of the collection in which the document
ends.

Although the manual process usually reaches high quality levels of classifica-
tion for traditional document collections, it does not scale to the humongous size of
the Web, both in terms of costs, time, and expertise of the human personnel required,
and as such it cannot be proficiently put into existence for the whole Web. An al-
ternative approach, useful for the Web, in which there is nobody in the professional
role and there is too much content for a single authority to classify, is the collab-
orative tagging.2 Collaborative tagging have grown widely used; numerous social
tagging systems, such as Del.icio.us (delicious.com/) for Web pages, Bibsonomy
(www.bibsonomy.org/) and CiteULike (www.citeulike.org/) for scientific publica-
tions, Flickr (www.flickr.com/) for images has become popular thanks to the tagging
feature. Using collaborative tagging, users freely determine suitable labels for their
resources without relying on any predetermined vocabulary or hierarchy; they tag
the content with their own vocabulary and ultimately their mental models. Tagging
is a textual annotation technique based on metadata information; this activity may
be manual if it is generated by a human user, or automatic if it is generated by
dedicated software.

Users can use tags containing a unique word (keyword) or a short phrase
(keyphrase) typically containing one to three words: The tags can be employed for
different scopes and tasks; in particular, we list a set of 8 intents/functions related
to the tagging activity3:

1. classifying a content by means of a corpus of concepts which are familiar to the user
(e.g., taxonomies, thesauri, or any bag of keywords representing meaningful categories
for him/her);

2. summarizing a resource content by means of a short list of keywords representing the
user-generated content description;

3. expressing a polarity judgment about a content by means of proper adjectives provided
as tags (e.g., “sad,” “wonderful”);

4. correlating tagged resources with people and their skills such as the level of expertise, the
reputation, or the importance of a person mentioned in the resource content (e.g., “guru,”
“geek,” “vip,” ‘‘bill-gates”);

5. creating dichotomic classification criteria in order to describe resources as belonging or
not to a particular category (e.g., “clinical”/“not-clinical,” “statistical”/“not-statistical,’
“accepted”/“rejected”);

6. providing a temporal information to a resource (e.g., dates of correlated events).
7. identifying the content ownership of a resource2;
8. refining categories.2 Some tags do not seem to be standalone: rather than establishing

categories by themselves, they refine or qualify existing categories.
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Although the differences between the eight functions are sometimes difficult to
detect, to some extent all these forms of tagging express a classification intent
targeted to establish effective schemata for organizing knowledge on the Web space
and to facilitate later retrievals. But, if on the one hand these classification techniques
are hard to scale and expensive, the uncontrolled/unsupervised social tagging activity
deals with a set of limitations,1 such as

• Ambiguity: With an uncontrolled vocabulary, many tags can be ambiguous. Indeed in
tags we can find the same ambiguity that we find in natural language (e.g., homonymy,
polysemy, synonymy, spelling mistakes, disambiguation).

• Undistinguished concerns: Social tagging systems do not enforce, or even propose, a
schema for distinguishing the purpose of a metadata value. Tags might be, indifferently,
proper names, subject descriptors, genres, self-reminders; tangential remarks (such as
colors or years for pictures).

• Independence of terms: Social tagging does not provide relations to connect and relate
different terms: each tag is independent of the others, and no inference is possible (the
structure of a tag system is “flat”).

• Effort: Systematically (and consistently) tagging Web resources is tedious, error prone,
and rather wearying.

The rest of this paper is organized as follows: Section 2 introduces the background
and related work; Section 3 summarizes the original contribution of this work; Sec-
tion 4 introduces the PIRATES framework, describing its architecture (Section 4.1),
and the specific modules, KpEM (Keyphrase Extraction Module), which extracts
potential phrases from a document in unsupervised and domain independent way
(Section 4.2) and ORE (Ontology Reasoning Engine), which automatically pro-
vides new tag recommendations for a generic textual content exploiting an ontology
(Section 4.3); Section 5 provides a use case scenario, which illustrates a typical in-
teraction between the user and the PIRATES system in the field of digital libraries.
Finally, Section 6 discusses the results and the evaluation of our framework, whereas
Section 7 concludes the paper with a brief overview of possible applications of our
approach and future research lines.

2. BACKGROUND AND RELATED WORK

One potential solution proposed in the literature for the aforementioned prob-
lems is the development of tag recommender tools that are capable of computing
tags for Web resources automatically (e.g., Refs. 4 and 5). This paper describes a
content-based tag recommendation method that can be applied to any textual doc-
ument; our approach mainly exploits two research areas: keyphrase extraction and
ontology mining. For this reason, this section covers background of the two research
areas and provides the motivation behind the exploitation of both.

A keyphrasea is a short phrase (typically it contains one to three words) that
provides a key idea of a document. A keyphrase list is a short list of keyphrases

a In the remainder of this paper, in our use of this term we are also referring to keyword.
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(typically 5–15 phrases) that reflects the content of a single document, capturing, in
such a way the main topics discussed and providing a brief summary of its content.

Document keyphrases are used successfully in information retrieval (IR) and
natural language processing (NLP) tasks such as document indexing,6 clustering,7, 8

classification,9 and summarization.10−12 Furthermore, keyphrases are well exploited
for other tasks such as thesaurus creation,13, 14 subject metadata enrichment,15 query
expansion.16, 17 Recently, keyphrase extraction method is addressed also for auto-
matic tagging task in Ref. 18.

Keyphrase extraction methods usually work in two stages:

(i) a candidate identification stage identifies all possible phrases from the document;
(ii) a selection stage selects only few candidate phrases as keyphrases.

Existing methods for keyphrase extraction can be divided into supervised and unsu-
pervised approaches:

A) The supervised approach treats the problem as a classification task. In this approach,
a model is constructed by using training documents, already labeled with keyphrases
assigned (by humans) to them.

This model is applied to select keyphrases from previously unseen documents.
Peter Turney (developer of Extractorb)19−21 is the first one who formulated keyphrase
extraction as a supervised learning problem. According to Turney, all phrases in a doc-
ument are potential keyphrases, but only phrases that match with human assigned ones
are considered “correct” keyphrases. Turney uses a set of parametric heuristic rules and
a genetic algorithm for the extraction procedure.

Another notable keyphrase extraction system is KEA (Keyphrase Extraction
Algorithm)22: it builds a classifier based on the Bayes’ theorem using training documents,
and it uses the classifier to extract keyphrases from new documents. In the training and
extraction phases, KEA analyzes the input document depending on orthographic bound-
aries (such as punctuation marks, newlines, etc.) and exploits two features : tf ×idf (term
frequency × inverse document frequency) and first occurrence of the term.

In Ref. 23, Chen et al. presented a practical keyphrase extraction system for extract-
ing keyphrases from Web pages. Chen et al. exploit a regression model that is trained on
human-labeled documents, for the extraction of keyphrases from new documents.

Hulth24 introduces linguistic knowledge, i.e. part-of-speech (pos) tags, in determin-
ing the candidate sets and, she uses 56 potential pos-patterns in identifying candidate
phrases in the text. Her experimentation has shown that, using a pos tag as a feature in
candidate selection, a significant improvement of the keyphrase extraction results can be
achieved. Another system that relies on linguistic features is LAKE (Learning Algorithm
for Keyphrase Extraction)25: it exploits linguistic knowledge for candidate identification
and it applies a Naive Bayes classifier in the final keyphrase selection. The feature se-
lection and learning model are the two key points for any keyphrase extraction process
that is treated as a classification task. Reference 26 provides a detailed survey on shallow
features plus simpler methods that can enhance the extraction performance.

All the above systems need a training data in small or large extent to construct an
extraction system. However, acquiring training data with known keyphrases is not always
feasible and human assignment is time consuming. Furthermore, a model, trained on a
specific domain, does not always yield to good classification results in other domains.

b www.extractor.com/
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B) The unsupervised approachc eliminates the need of training data. It selects a general
set of candidate phrases from the given document, and it uses some ranking strategy
to select the most important candidates as keyphrases for the document. Barker and
Cornacchia27 extract noun phrases from a document and rank them by using simple
heuristics based on their length, frequency, and the frequency of their head noun. In Ref.
28, Bracewell et al. extract noun phrases from a document and then cluster the terms that
share the same noun term. The clusters are ranked on the basis of term and noun phrase
frequencies. Finally, top-n ranked clusters are selected as keyphrases for the document.
In Ref. 29, Liu et al. propose an unsupervised method that extracts keyphrases by using
clustering techniques and assuring that the document is semantically covered by these
terms. Another unsupervised method that utilizes document cluster information to extract
keyphrases from a single document is presented in Ref. 30.

Employing graph-based ranking methods for keyphrase extraction is another widely
used unsupervised approach, exploited in Refs. 31–33: A document is represented as a
term graph, based on term relatedness, and then a graph-based ranking model algorithm
(similar to the PageRank algorithm34) is applied to assign scores to each term. Term
relatedness is approximated in between terms that co-occur each other within a predefined
window size.

Keyphrase extraction systems, developed by following unsupervised approaches,
are in general domain independent since they are not constrained by any specific training
documents.

As discussed above, keyphrase extraction provides potential phrases that are
explicitly present in the document, without referring any vocabulary (e.g., subject
headings, taxonomies); but, this does not represent a solution for the well-known
problems of tagging (e.g., ambiguity); so, for instance, let us consider two documents
using the term “model” in two different contexts: scientific literature and fashion.
In the former, the term “model” may refer to any “mathematical model,” “model
in software engineering,” “data model,” “working model” etc., where as in the later
it may refer to a “fashion model.” For both documents, the keyphrase extraction
system can suggest the same tag “model” without clearly referring what type of
model it is. This ultimately leaves the reader in ambiguity.

On the other hand, domain-specific controlled vocabularies, classification
schemata, lexicon (such as WordNet), thesauri, taxonomies, and ontologies have
a huge potential to improve information organization, management and understand-
ing with their rich subjective nature. But their usage in supporting activities like
tagging represents yet an open challenge. Different methodologies and approaches
used in literature have been analyzed in Ref. 1: some works simply extend ontologies
in a folksonomy-like approach; other works add multiple labels to ontology nodes.

Another line of research is concerned with extracting basic semantic relations
from folksonomies or adding more ontology-like features to social tagging. For
example, Folk2onto35 maps social tags (taken from Del.icio.us) to ontological cate-
gories (using a Dublin Core-based ontology) to classify and give a proper structure to
the tagged resources. Another system, ePaper36 uses a hierarchical news ontology,

c Note that unsupervised approaches might use tools like POS taggers which rely on super-
vised approaches. However, as such tools are usually already available for most languages, we
consider an approach is unsupervised if it does not make use of any training documents that have
already keyphrases assigned to them.
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based on the IPTC (www.iptc.org) subject codes taxonomy, as a common language
for content based filtering to classify news items and to deliver personalized news-
paper services on a mobile reading device. In Ref. 37, the authors propose an
ontological approach in Personalized E-Learning Scenarios; in Ref. 38 the authors
present a new ontology-based model for resource inventory by integrating semantic
Web technologies and agents paradigm.

In the literature, there are many examples of tag recommender systems, but the
major part of them do not use ontologies: Autotag39 recommends tags to Weblog
posts based on the tags assigned to similar Weblog posts in a given collection; it
uses information retrieval measures to find similar Weblog posts. Other systems
such as Ref. 40 suggest tags for new bookmarks, using textual content associated
with bookmarks to model documents and users: in this case, the authors exploit the
Bibsonomy data set, which contains Web pages and publications. But to the best of
our knowledge, automatic tagging so far has not been connected to ontology mining.

3. CONTRIBUTION OF THIS WORK

The main aim of this paper is to present our unsupervised approach dedicated
to recommend significant metadata, for a given Web document: Our methodology
combines tags, keyphrases extraction, and ontology mining, and assists the user
when (s)he tags a Web resource. To the best of our knowledge, this is totally a new
perspective for tag recommendation. Using this approach, we obtain a set of the
following benefits:

• provide tags that summarize the semantic content of a Web resource (this is the purpose
of keyphrases);

• provide good thematic and disambiguated tags;
• use a controlled, ontology-based vocabulary, not necessarily present in the original Web

resource, and classify it as a result of the automatic tagging process;
• reduce the manual effort required to tag a Web resource.

There are some important differences between our approach for keyphrase
extraction and the works discussed in the Section 2. First of all, we exploited the
features in the keyphrase extraction process to rank rather than to classify keyphrases.
Moreover, the keyphrase extraction approach for automatic tagging discussed in
the literature (e.g., Ref. 18) typically needs training documents with keyphrases
already assigned. Instead, in our work, we have introduced features that combine
linguistic knowledge (such as part-of-speech tags) with statistical features (such as
term frequency, phrase depth, and n-grams) in determining candidate keyphrases.

The proposed approach discussed here is implemented and tested in the
PIRATES framework, a prototype system for personalized content retrieval, an-
notation, and classification.3, 41

The first evaluation results show that we can effectively compute relevant tags
for a variety of documents with different levels of documents’ subjectivity.
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4. THE PIRATES FRAMEWORK

PIRATES (Personalized Intelligent tag Recommender and Annotator TEStbed)
is a framework for text-based content retrieval and categorization that exploits social
tagging, user modeling, and information extraction techniques. The main feature of
PIRATES concerns a novel approach that automates in a personalized way some
typical manual tasks (e.g., content annotation and tagging). In particular, it proposes
an automated method to assist a user interested in tagging a Web resource, analyzing
the textual content of resources, and providing new tag recommendations on the basis
of an ontology. We used the ontology to examine how the knowledge incorporated
in it can help in the tasks of classification and tagging.

4.1. PIRATES Architecture

PIRATES operates on a set of input documents stored in the information base
(IB) repository. To classify them, it suggests some personalized tags and other forms
of textual annotations (e.g., keyphrases). The input documents are then annotated
with these tags, forming the knowledge base (KB) repository.

The PIRATES architecture, shown in Figure 1, is formed by three major com-
ponents:

• The Cognitive Filtering Tools module implements IFT (Information Filtering Tool), a
system based on an algorithm42 designed to build representations of user interests (IFT
user models). Exploiting these models, IFT provides mechanisms of relevance feedback

Figure 1. PIRATES architecture.
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used to tune the classification of a document that belongs to an incoming stream of
input documents (e.g., the results of a spidering process over the Web). The classification
process produces evaluations of the relevance (in the sense of topicality) of a document
according to a specific user model represented with semantic (co-occurrence) networks.

• The Automatic Tagger module implements a set of modules devoted to automatically
annotate an incoming stream of text (the content of a document) by means of tag rec-
ommendations: IEM (Information Extraction Module) suggests named entities, KpEM
(Keyphrase Extraction Module) provides keyphrases, SAT (Sentiment Analysis Tool)
identifies polarity judgments, STE (Social Tagger Engine) assigns tags used by a com-
munity of Web 2.0 users, whereas ORE (Ontology Reasoning Engine) recommends tags
extracted from an ontology. In this paper, we focus on the description of KpEM and ORE
modules, whereas interested readers may find detailed description of the other modules
in Refs. 43 and 44.

• The Knowledge Base Builder module organizes documents in a knowledge base reposi-
tory, producing annotated documents and user conceptual maps. A more detailed descrip-
tion of this module is proposed in Ref. 45.

In the following sections, we present in detail the Automatic Tagger module,
which is the main subject of this article. More specifically, we describe two of its
components: the KpEM and the ORE modules.

4.2. Keyphrase Extraction Module (KpEM)

KpEM is a component of the Automatic Tagger that implements a family of
algorithms for extracting keyphrases from textual Web documents. These algorithms
can be partitioned in two different approaches:

• supervised, domain-dependent algorithms, which requires a supervised training procedure
that exploits the explicit knowledge provided by a human (in our case, the presence of
keywords pre-assigned by authors to their documents);

• unsupervised, domain independent algorithms, which works without both a specific do-
main model and any a priori knowledge about the nature of the document set.

In the first version of PIRATES system,3 KpEM adopted only a supervised approach,
incorporating a slightly modified version of KEA for the task of tag recommendation
by means of keyphrases. We have now extended KpEM adding a new unsupervised
algorithm for keyphrase extraction which, despite of KEA, works without requiring
a training document set with preassigned keyphrases. Because of this characteristic
we called this new algorithm DIKpE, Domain-Independent Keyphrase Extraction.
DIKpE is illustrated in the following subsections.

4.2.1. DIKpE System

The general workflow in DIKpE is shown in Figure 2 and is illustrated in detail
in the following steps. We follow three main steps:

• Step 1: extract candidate phrases from the document;
• Step 2: calculate feature values for candidates;
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Figure 2. Workflow in DIKpE system.

• Step 3: compute a score for each candidate phrase from its feature values and rank the
candidate phrases based on their respective scores, in such a way, highest ranked phrases
being assigned as keyphrases.

Step 1: Candidate Phrase Extraction

The candidate phrase extraction step concerns several tasks such as format
conversion, cleaning, and delimiting sentences, pos tagging, stemming, and properly
forming n-gram lists. Each task is detailed below.

• Format conversion. We assume that the input document can be in any format (e.g., pdf ),
and as our approach only deals with textual input, our system first exploits document
converters to extract the text from the given input document.

• Cleaning and sentence delimiting. The plain text form is then processed to delimit sen-
tences, following the assumption that no keyphrase parts are located simultaneously in
two sentences. Separating sentences by inserting a sentence boundary is the main aim
of this step. We have used an adequate delimiter for sentence boundary. The following
heuristics are applied in setting the sentence boundaries:

– Special symbols such as ‘.’, ‘@’, ‘ ’, ‘&’, ‘/’, ‘-’, ‘” are replaced with the sentence
delimiter wherever they appear in the input document, but with the following
exemptions:
∗ The symbols ‘.’, ‘@’, ‘ ’, ‘&’, ‘/’, ‘-’ are allowed if they are surrounded by

letters or digits (e.g., e-commerce, hiperlan/2).
∗ The symbol ‘” is allowed if it is preceded by a letter or digit (e.g., pearson’s

correlation).
– Other punctuation marks (e.g., ‘?’, ‘!’) are simply replaced by sentence delimiter,
– Apostrophes are removed and the entire input text is converted into lowercase.

The result is a set of sentences each containing a sequence of tokens, bounded by the
sentence delimiter.
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• POS tagging and n-gram extraction. We assign a pos tag (noun, adjective, verb, etc.) to
each token in the cleaned text, by using Stanford log-linear part-of-speech tagger.d The
Stanford pos tagger uses 36 typese of pos tags. The assigned pos tags are later utilized in
the filtration of candidate phrases and calculation of pos value feature. The next step in
our procedure is to extract n-grams. We have observed that in the data set utilized for the
experimentation, phrases that are constituted by more than three words are rarely assigned
as keyphrases, so, in our process, we set the value of n to the maximum value three. We
extract all possible subsequences of phrases up to three words (uni-grams, bi-grams, and
tri-grams).

• Stemming and stopword removing. From the extracted n-grams, we remove all phrasesf

that start and/or end with a stopword and phrases containing the sentence delimiter. Partial
stemming (i.e., unifying the plural forms and singular forms which mean essentially the
same thing) is performed using the first step of Porter stemmer algorithm.46 To reduce
the size of the candidate phrase set, we have filtered out some candidate phrases by using
their pos tagging information. Uni-grams that are not labeled as noun, adjective, and verb
are filtered out. For bi-grams and tri-grams, only pos-patterns defined by Justeson and
Katz47 and other patterns that include adjective and verb forms are considered.

• Separating n-gram lists. Generally, in a document, uni-grams are more frequent than
bi-grams, and bi-grams are more frequent than tri-grams and so on. In the calcula-
tion of phrase frequency (explained in the next step) feature, this shows a bias toward
n-grams, which are having small value of n. To solve this problem, we have separated
n-grams of different lengths (n = 1, n = 2, n = 3) and arranged them in three different
lists. These lists are treated separately in calculation of feature sets and in final keyphrase
selection. As a result of Step 1, we obtain a separate list of uni-gram, bi-gram, and tri-gram
candidate phrases (with corresponding pos tags) per document after the proper stemming
and stopword removal phases.

Step 2: Feature Calculation

The feature calculation step characterizes each candidate phrase by statistical
and linguistic properties. Five features for each candidate phrase are computed:

• Phrase frequency: This feature is the classical term frequency (tf) metric, utilized in many
state of the art keyphrase extraction systems,19, 24, 48 in our use of this feature, instead of
calculating it with respect to the whole length of the document, we compute it with respect
to each n-gram list. With a separate list for each n-gram in hand, the phrase frequency for
phrase P in a list L is

f requency(P,L) = f req(P,L)

size(L)

where

– f req(P,L) is the number of times P occurs in L and
– size(L) is the total number of phrases included in L.

• Pos value: As described in Refs. 24 and 27, most author-assigned keyphrases for a
document turn out to be noun phrases. For this reason, in our approach, we stress the

d http://nlp.stanford.edu/software/tagger.shtml.
e Pos tagging follows the Penn Treebank tagging scheme.
f In our use of this term, a phrase is n-gram with n = 1, 2, 3.
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presence of a noun in a candidate phrase while computing a pos value for the phrase.
A pos value is assigned to each phrase by calculating the number of nouns (singular
or plural) normalizing it by the total number of terms in the phrase. For instance, in a
tri-gram phrase, if all tokens are noun forms, then the pos value of the phrase is 1, if two
tokens are noun forms, then the pos value is 0.66, and if one noun is present, the value is
0.33. All remaining phrases that do not include at least one noun form are assigned the
pos value 0.25. The same strategy is followed for bi-gram and uni-gram phrases.

• Phrase depth: This feature reflects the belief that important phrases often appear in the
initial part of the document especially in news articles, and scientific publications (e.g.,
abstract, introduction). We compute the position in the document where the phrase first
appears. The phrase depth feature is computed as described in Ref. 7. The phrase depth
value for phrase P in a document D is

depth(P,D) = 1 −
[

first index(P )

size(D)

]

where

– f irst index(P ) is the number of words preceding the phrase’s first appearance
and

– size(D) is the total number of words in D.

The result is a number between 0 and 1. The highest values represent the presence of a
phrase at the very beginning of the document. For instance, if a phrase appears at 16th
position, while the whole document contains 700 words, the phrase depth value is 0.97,
indicating the first appearance at the beginning of the document.

• Phrase last occurrence: We give also importance to phrases that appear at the end of the
document, since keyphrases may also appear in the last parts of a document, as in the case
of scientific articles (i.e., in the conclusion and discussion parts). Last occurrence feature
is proposed in Ref. 49 for extracting keywords (i.e., n-grams where n = 1); however,
we exploit the feature for extracting keyphrases (i.e., n-grams where n ≥ 1). The last
occurrence value of a phrase is calculated as the number of words preceding the last
occurrence of the phrase normalized with the total number of words in the document. The
last occurrence value for phrase P in a document D is

last occurrence(P,D) = last index(P )

size(D)

where

– last index(P ) is the number of words preceding the phrase’s last appearance
and

– size(D) is the total number of words in D.

For instance, if a phrase appears for the last time at 500th position in a document that
contains 700 words, then the phrase last occurrence value is 0.71.

• Phrase lifespan: The span value of a phrase depends on the portion of the text that is
covered by the phrase. The covered portion of the text is the distance between the first
occurrence position and last occurrence position of the phrase in the document. The span
feature is utilized in Ref. 49 on lexical chainsg for extracting keywords. The lifespan

g A lexical chain is a set of words that are related with each other.

International Journal of Intelligent Systems DOI 10.1002/int



AUTOMATIC KEYPHRASE EXTRACTION AND ONTOLOGY MINING 1169

value is computed by calculating the difference between the phrase last occurrence and
the phrase first occurrence.

The lifespan value for phrase P in a document D is

lifespan(P,D) = [last index(P ) − first index(P )]

size(D)

where

– last index(P ) is the number of words preceding the phrase’s last appearance,
– f irst index(P ) is the number of words preceding the phrase’s first appearance,

and.
– size(D) is the total number of words in D.

The result is a number between 0 and 1. The highest values mean that the phrase is
introduced at the beginning of the document and carried until the end of the document.
Phrases that appear only once through out the document have the lifespan value 0.

As a result of step 2, we get a feature vector for each candidate phrase in the
three n-gram lists.

Step 3: Scoring and Ranking

In this step, a score is assigned to each candidate phrase, which is later exploited
for the selection of the most appropriate phrases as representatives of the document.
The score of each candidate phrase is calculated as a linear combination of the five
features. We call the resulting score value as keyphraseness of the candidate phrase.

The keyphraseness of a phrase P with non empty feature set {f1, f2, . . . , f5},
with nonnegative weights {w1, w2, . . . , w5} is

keyphraseness(P ) =
∑5

i=1 wifi∑5
i=1 wi

In the first stage of our research, we assigned equal weights to all features,
yielding to the computation of the average. Therefore:

keyphraseness(P ) = 1

n

n∑
i=1

fi,

where:

• n is the total number of features (i.e., five in our case),
• f1 is the phrase frequency,
• f2 is the phrase pos value,
• f3 is the phrase depth,
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• f4 is the phrase last occurrence, and
• f5 is the phrase lifespan.

A feature could have more impact than others on keyphraseness and influences
how candidate phrases will be selected, as the features have not the same nature
(e.g., frequency vs. pos value, depth vs. lifespan). To compensate this phenomena
different weights are assigned to each feature.

For weight calculation, we are proposing a novel approach that computes
associate weights to features by examining the already existing ground truth author-
assigned keyphrases. For this, we utilized a publicly available keyphrase extraction
data seth50 which contains 215 full length scientific documents from different com-
puter science subjects. Each document in the data set contains a first set of keyphrases
assigned by the paper’s authors and a second set of keyphrases assigned by volun-
teers, familiar with computer science papers. We considered author-assigned and
volunteer-assigned keyphrases as ground truth keyphrases for the documents. For
these keyphrases, the five feature values are computed as explained in Section 4.2.
Since DIKpE is capable of extracting only phrases that are explicitly stated in the
documents, from 215 documents, overall, 1000 keyphrases with corresponding fea-
ture values are computed. Highest values (i.e., near to 1) represent the goodness of
the feature. The 1000 keyphrases with five feature values are represented in matrix
form as follows:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f(1,1) f(1,2) f(1,3) f(1,4) f(1,5)

...
...

...
...

...

f(j,i) f(j,i) f(j,i) f(j,i) f(j,i)

...
...

...
...

...

f(1000,1) f(1000,2) f(1000,3) f(1000,4) f(1000,5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where f(j,i) represents the value of the ith feature calculated for the j th keyphrase
(i = {1, . . . , 5} and j = {1, . . . , 1000}).

For each feature fi the mean μfi
and the variance σ 2

fi
of the vector [f(1,i), . . . ,

f(j,i), . . . , f(1000,i)] are calculated as follows:

μfi
=

∑1000
j=1 f(j,i)

1000

σ 2
fi

=
∑1000

j=1 f 2
(j,i)

1000
− μ2

fi

The mean reflects the central tendency of the feature, and the variance reflects
the variability of the feature values with respect to the mean. Obviously, the feature

h http://wing.comp.nus.edu.sg/downloads/keyphraseCorpus/
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Table I. Final Weights Assigned
to the Features.

Feature name Weight

Phrase frequency 0.10
Pos value 0.30
Phrase depth 0.32
Phrase last occurrence 0.16
Phrase lifespan 0.12

having high-mean and low-variance contributes maximum to the final keyphrase
result. The weight for fi is computed by simply dividing the mean with the variance.

In the equation form, the weight of fi is

weight(fi) = μfi

σ 2
fi

The weights are normalized and assigned to the features. Our weight calculation
approach resulted the highest weight to the phrase depth feature, then second highest
is given to pos value, and so on for last occurrence, lifespan, frequency features,
respectively. The final weights are shown in Table-I.

Experiments showed that results are better when considering the associate
weights, and they are detailed in Section 6.

Producing Final Keyphrases. The scoring process produces three separate lists
L1, L2, and L3 containing, respectively, all the uni-grams, bi-grams, and tri-grams
with their keyphraseness values. We then select some keyphrases, which are con-
sidered to be the most important from each list. In Ref. 51, Kumar and Kannan
proposed a strategy for selecting final keyphrases from n-grams, after an extensive
statistical analysis regarding the length of the author assigned keyphrases for scien-
tific documents. In this paper, the documents we are utilizing for the experiment are
scientific in nature, to produce the k final keyphrases, we have followed the same
strategy that is proposed and utilized in Ref. 51. In every list, the candidate phrases
are ranked in descending order based on the keyphraseness values. Top 20% (i.e.,
20% of k) keyphrases are selected from “L3,” Top 40% (i.e., 40% of k) are selected
from “L2,” and remaining 40% of rest of k keyphrases are selected from “L1.” In
this way top k keyphrases for the given document are extracted.

4.3. Ontology Reasoning Engine

ORE is a software module, which extracts tags from an ontology. More specif-
ically, it does inference over a local ontology written in OWL format, using a
reasoning mechanism based on is-a relationship between the ontology concepts. In
this way, it can suggest terms that are not present in the examined text document,
providing also a higher level of abstraction for the recommended tags due to the
inheritance hierarchy relations expressed in the ontology. The inference mechanism
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is based on a matching algorithm that searches the correspondences between the
tags provided by PIRATES annotators and the concepts of a domain ontology. It
is possible to use any general ontology, but using the more specialized vocabulary
of a domain ontology increases the likelihood to find correspondences between the
terms present in both the ontology and the documents.

4.3.1. Ontology Mining to Infer New Knowledge

Our ontology-based tag recommender system works in combination with
KpEM. In fact, its use is applied in cascade of the keyphrase extraction procedure
executed by KpEM. Initially, for each keyphrase provided by KpEM for a given
document, ORE is programmed to find the corresponding match with the terms in
the ontology. ORE is useful if there exists at least one match. In such case, ORE
follows a special navigation strategy to find ancestor nodes and common ancestor
nodes of the corresponding matches. We have followed the spreading activation
algorithm52 to implement the navigation strategy composed by the following steps:

• For each keyphrase extracted by KpEM for a given document, the algorithm looks for
a corresponding match in the ontology, retrieving its immediate superclass by following
parent–child relationship.

• As second step, the retrieved superclass is marked as ontology concept mapping node.
• Then, if there are at least two ontology concept mapping nodes, it retrieves the common

ancestor node for them and possibly all the nodes in the path between the ontology concept
mapping nodes and the common ancestor node.

5. A USE CASE SCENARIO IN THE FIELD OF DIGITAL LIBRARIES

In the past years, we worked on the E-Dvara platformi, an international research
project in the area of digital libraries. To experiment with the PIRATES framework,
we recently started to integrate its semantic services in E-Dvara,53 approaching the
vision of semantic digital library.54 We found in the literature several projects that
integrate ideas coming from the Semantic Web for representing, structuring, and
classifying information.55–57 Other approaches emphasize more the integration of
social practices, like social and collaborative tagging, arising from the Web 2.0 ex-
perience.58, 59 Our contribution is aimed at combining these approaches, introducing
in E-Dvara dedicated semantic tools for

• automatically suggesting new content related to a specific topic of interest for the user,
• recommending similar documents with respect to a search query performed by the user,

and
• helping the user to better specify his information need by means of a query reformulation

service.

In the rest of this section, we discuss the application of the PIRATES framework
to provide the above-mentioned services in the context of digital libraries. We also

i http://edvara.uniud.it/india
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Figure 3. A screenshot of our PIRATES prototype.

highlight the role of the PIRATES annotators presented in this article: KpEM and
ORE.

Suppose we have a user collecting an archive of Web documents in the field of
software engineering automatically retrieved by the Cognitive Filtering Tools service
embedded in the digital library. Suppose also that, one day, this tool notifies (among
the others) the paper “A UML Class Diagram Analyzer”.j To classify this new
content, the user exploits two PIRATES annotators, KpEM and ORE (Figure 3). In
particular, in this example, the user configured the ORE annotator to use an ontology

j http://twiki.cin.ufpe.br/twiki/pub/SPG/GroupPublications/csduml04.pdf.
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Figure 4. Ontology reasoning.

in the field of software engineering. For our tests, we extend the publicly avail-
able Software engineering.owlk ontology including several concepts at the instance
level. Using this ontology and starting from the keyphrases extracted by KpEM,
ORE implements the navigation strategy described in Section 4.3. The Protégé-
OWL APIl is utilized for the implementation of the navigation strategy. The API
provides classes and methods to load, save, query, and perform reasoning on OWL
ontologies.

Four out of the suggested keyphrases (i.e., Alloy, UML, OCL, and Invariants)
are matched by ORE with a corresponding concept (either at the class or at the
instance level) in the ontology, as shown in Figure 4. Starting from these nodes, ORE
uses the spreading activation algorithm to find common ancestors representing more
abstract subjects. Then both one-to-one ontology mappings and common ancestors
are provided to the user by PIRATES as potential tag recommendations. In this way,
for the input document, ORE recommends five new tags, which are not presented in
the text (i.e., Software Design Notations, Formal Specification Languages, Design
by Contract, Formal Specification Techniques, and Software Design). These tags
represent abstractions of the keyphrases extracted by the other annotators available
in PIRATES. Automatic tag recommendation may lead to several improvements in

k The Software engineering.owl ontology has been developed at the Curtin University of
Technology and is available from the SEONTOLOGY Web site http://www.seontology.org/.

l Protégé-OWL API is an open-source Java library for the Web ontology language and
RDF(S). It is available for download: http://protege.stanford.edu/plugins/owl/api/.
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content access in several applicative contexts. In digital libraries, for example, one
of such improvements is the annotation-based content recommendation of similar
documents. For example, if a user is accessing a specific document already available
in the archives of the digital library and yet tagged by PIRATES, ORE can be
exploited to automatically find a set of most similar contents to present the user.
Similarity, this case can be defined as the set of common tags shared by both a
source content and the other contents available in the archives. In this scenario, each
user can provide a query to the digital library search engine, browse the results, and
in real-time, receive a list of suggested contents, which do not necessarily contain
the same keywords used in the query (tags identified by PIRATES may represent
concepts that are not directly referred in the resource, but obtained as a result of the
ontology base inference).

Another scenario concerns the task of query reformulation. Semantic represen-
tation of available contents, provided manually or in an automatic way, may also
be exploited to improve the effectiveness of traditional keyword-based retrieval.
Indeed, semantic knowledge can be used to augment the effectiveness of traditional
keyword search mechanisms, moving further toward the concept of semantic search.
To achieve such goals, a query reformulation engine will be included in the digital
library as an explicit semantic layer. Using both the contents metadata and the on-
tologies constituting the Knowledge Base of the platform, the query reformulation
engine will intercept the requests submitted by users and suggests, in addition to the
retrieved contents, a list of potentially related queries.

According to the workflow and the nature of the set of modules constituting the
PIRATES framework, the query reformulation task will be based on two different
kinds of knowledge: ontology-based reformulation and annotations-based reformu-
lation. Ontology-based reformulation will be used to identify concepts similar to
the terms used in the query by browsing a domain-dependent ontology used by the
ORE module to annotate resources. Such concepts may be included in the query or
can be used to substitute existing terms. Annotations-based reformulation, on the
other hand, is based on the tags assigned to the contents retrieved using the original
query; by ranking tags and looking at the most relevant ones (relevance will be de-
fined as a tag frequency function), reformulation engine can generate a new query.
Annotations-based reformulation exploits all the different kinds of annotations pro-
vided by the PIRATES framework; such approach may be seen as complementary to
the one used by the ontology-based reformulation, where only knowledge occurring
in the domain ontology is considered.

6. RESULTS AND EVALUATION

This section presents the results of the experimentation conducted on the tag
recommendation modules and the evaluation process.

Our goal is to estimate the effectiveness of the PIRATES tag recommendation
approach comparing the number of our suggested keyphrases with that of keyphrases
assigned by the document’s author. Simply, let ϕi (D) be the set of i suggested
keyphrases for a document D by the recommender ϕ, and keyphrases(D) the set
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of keyphrases associated with the document D by his (her) author; then, if m is
the number of documents, we calculate the average number of correct keyphrases
(suggested by the recommender ϕ when it returns i keyphrases) as follows:

1

m

∑
D

|ϕi (D) ∩ keyPhrases(D)|

The applied metric is quantitative and does not take into account the subjectivity
of any human judgment about the appropriateness of the semantic relation of an
automatically generated (inferred) tag with respect to a specific document. Thus,
a tag suggested by PIRATES that does not match with a preassigned keyword
is considered as a “bad tag” (“wrong result”) in this evaluation. Clearly, this is
not necessarily be the case, since in general there may exist many tags, different
from the keyphrases assigned by the authors, that are equally good for a given
document. By the way, the results discussed below should be interpreted as a lower-
bound performance indicator (not all the “wrong recommendations” can always be
interpreted as such by human users of the system). Three different experiments are
conducted to test the system’s performance. Publicly available keyphrase extraction
data seth is utilized for the first two experiments. Our own data set is utilized for
the third experiment for the use of ontology. Following subsections provide the
complete details of the experiments.

6.1. Experiment 1

For the first experiment, we have considered keyphrase extraction works pre-
sented by Nguyen and Kan50 and KEA22 as baseline systems. From the available 215
documents in the data set, Nguyen and Kan has taken 120 documents to compare
these with KEA. The maximum number of keyphrases for each document (i.e., k)
is set to 10 in Nguyen and Kan. We have taken their results50 as reference, and in
the first experiment we have worked on 120 documents randomlly selected from the
215 documents. In all the experiments, we removed the bibliography section from
each document in the data set to better utilize the phrase last occurrence feature. The
same partial stemming strategy exploited in candidate phrase selection (see Section
4.2.1) is used also in matching correct keyphrases.

Table II shows the average number of correct keyphrases of three algorithms
when 10 keyphrases are extracted from each document: The first row shows the
average number of correct keyphrases, i.e., 3.03 suggested by KEA, the second row
shows the average number of correct keyphrases, i.e., 3.25, suggested by Nguyen
and Kan, the third rows shows the average number of correct keyphrases, i.e., 4.75,
suggested by our system DIKpE when equal weights are assigned to the features,
whereas the last row shows the average number of correct keyphrases, i.e., 5.04,
suggested by DIKpE after assigning associate weights to the features. In either of
the cases, our system significantly outperforms the other two.
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Table II. Overall Performances.

System Average number of Correct Keyphrases

KEA 3.03
Nguyen&Kan 3.25
DIKpE (before assigning weights) 4.75
DIKpE (after assigning weights) 5.04

6.2. Experiment 2

For the second experiment, we have extracted keyphrases for all 215 documents
and compared our approach exclusively with the results provided by KEA as KEA
is publicly available and considered as an emerging benchmark for evaluation in the
literature. We have utilized a total of 70 documents (with keyphrases assigned by
authors) extracted from the 215 documents data set to train the KEA algorithm. For
each document, we extracted 7, 15, and 20 top keyphrases using both our approach
and KEA.

The results are shown in Table III and graphically represented in Figure 5.
The lowest line describes the performances of KEA which, on average, correctly
recommends respectively 2.05, 2.95, and 3.08 keyphrases when it returns 7, 15, and
20 keyphrases. Performances of both DIKpE before assigning weights (the central
line) and DIKpE after assigning weights (the upper line) outperform significantly
the results of KEA, where DIKpE after assigning weights gives the best results.

Figure 5. Performance of DIKpE compared to KEA.
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Table III. Performance of DIKpE Compared to KEA.

Average number of correct keyphrases

Extracted keyphrases KEA DIKpE (before assigning weights) DIKpE (after assigning weights)

7 2.05 3.52 3.86
15 2.95 4.93 5.29
20 3.08 5.02 5.92

6.3. Experiment 3

To utilize the SEOntology of software engineering domaink that is publicly
available, for the third experiment we have generated our evaluation data set. To
obtain the data set, we used the Cognitive Filtering Tools module and the IFT
algorithm (see Section 4.1): they automatically generated a collection of scientific
papers concerning various themes in the software engineering field. We selected
among them, 60 documents (m = 60) which explicitly contained a set of preassigned
keywords by authors. On the whole, this restricted data set contains a total of 289
keyphrases. The following sections detail the third experiment that utilized the
ontology.

We relate the performance of our framework by comparing it with that of other
recommender systems, such as KEA: we executed several experiments to evaluate
the average number of correct suggestions provided by different recommenders
when they suggest 3, 5, 7, and 10 keyphrases, respectively.

6.3.1. KpEM Tag Recommendations

Table IV shows the keyphrases recommended by KpEM for three sample doc-
uments. The first row lists the paper’s title, the second row the keyphrases assigned
by the author(s), whereas the third row contains the top five keyphrases extracted
by KpEM: We highlight in bold style the “correct result,” that is, in this case, the
keyphrases that matched with the author-assigned keyphrases. For example, for the
first paper, they are four: concurrent systems, model analysis, deadlock, and mdd.

Figure 6 synthesizes the results of the experiment, when 3, 5, 7, and 10 tags
are suggested. The x-axis indicates the number of tags (keyphrases) recommended
by PIRATES using the KpEM module, whereas the y-axis contains the average
number of tags that matched with the keyphrases inserted by the author. The upper
line in Figure 6 describes the behavior of an abstract, optimal recommender ϕ, which
generates the set of tag recommendations assigning greatest relevance to keyphrases
preassigned by each author to their documents. Obviously, this is just a theoretical
upper bound to the performance of a recommender. No real recommender can in
general perfectly conform with this performance indicator. We can observe that the
number of correct suggestions grows quite slowly when the optimal recommender
suggests more than seven keyphrases: this is explained by the fact that in our data
set very few authors assigned more than seven keyphrases to their documents.
Moreover, there are keyphrases suggested by the optimal recommender that cannot
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Table IV. Top Five Keyphrases Extracted by KpEM for Three Sample Documents.

“A UML/SPT Model
Analysis Methodology for

Document Concurrent Systems Based “An MDA Framework “Integration of UML
Title on Genetic Algorithms.” Supporting OCL”. Views using B Notations.”

Keyphrases MDD MDE UML
assigned by deadlocks OCL class operation
document author model analysis model transformation use case

concurrent systems code-generation event
genetic algorithms verification B method
SPT
UML

uml design models template-based communication between
Keyphrases code generator state-charts
extracted concurrent systems model transformations use cases

by model analysis code generation class operations

KpEM deadlock mda uml

mdd verification refinement

be extracted looking only the text (some authors assigned keyphrases which express
more the author’s tacit knowledge than the concepts directly expressed in the textual
documents themselves).

The second line in Figure 6 proposes the results of a second abstract optimal
recommender, which considers only author-assigned keyphrases that are explicitly

Figure 6. Overall performances.
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stated in the document; this recommender “reasons in the same way as the doc-
uments’ authors” without adding any form of knowledge, which is not explicitly
stated in the documents. We can observe that there is a gap between the two hypo-
thetical recommenders described in Figure 6. Obviously, the second line resembles
more easily a real recommender and represents a more realistic upper-bound for
any automatic tagging approach such as those of DIKpE and KEA. Nonetheless,
it is interesting to compare both these hypothetical recommender systems with the
performance of PIRATES, especially considering the role that a reasoning engine
such as ORE can play to “simulate” any “intelligent” reasoning mechanism.

The last three lines in Figure 6 describe the performances of DIKpE after
assigning weights, DIKpE before assigning weights and KEA. According to our
evaluation criteria, DIKpE after assigning weights obtained better performance
than the other two approaches where, however, DIKpE before assigning weights
outperforms KEA. The Figure 6 shows, for example, that when five tags have been
suggested, on average, DIKpE after assigning weights realized 2.63 matches, DIKpE
before assigning weights 2.26 matches and KEA 1.41 matches.

To prove the strength of our results, some significance tests have been executed
to verify whether the observed differences among KEA, DIKpE before assigning
weights and DIKpE after assigning weights are truly meaningful or occurred by
chance. The statistical tests want to disprove the null hypothesis that the compared
approaches have the same performances and observed differences depend just on
noise. To obtain this result, statistical tests have to calculate a p-value, that is the
probability that observed differences occurred by chance. In particular, both a para-
metric test (the two tailed paired t-test), and a nonparametric test (the Wilcoxon
test60) have been executed proving that DIKpE before assigning weights outper-
forms KEA in a statistically significant way (p-value ≤ 0.01) when 5, 7 or 10
tags are returned. Moreover, DIKpE after assigning weights always outperforms in
a statistically significant way, DIKpE before assigning weights and KEA with a
p-value ≤ 0.01. In conclusion, DIKpE after assigning weights provides the bet-
ter results. Moreover, it is interesting to note also that, unlike KEA, our approach
in keyphrase extraction is not affected by the performance degradation problem
mentioned in Ref. 61, especially concerning the domain specificity.

6.3.2. ORE Tag Recommendations

Table-V contains the tags generated by ORE for the same three sample docu-
ments. All the tags recommended by ORE are to be considered as new knowledge
automatically inferred by the system because they are not explicitly stated in the doc-
uments. In Table V, the second row lists the top 10 keyphrases extracted by KpEM;
the row named “One-to-one ontology mappings” contains the terms, present in the
ontology, which matched with the keyphrases provided by KpEM. If a keyphrase
realizes a match with either an instance or a class present in the ontology, then the
One-to-one term provided by ORE is the instance’s class; otherwise, if the keyphrase
matches with a class, ORE returns the immediate parent class in the hierarchy path.
Finally, the row “Common ancestor” is computed by ORE by following the naviga-
tion strategy explained in Section 4.3.
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Table V. ORE Tags for the Three Sample Papers Shown in Table-IV.

Document Title “A UML/SPT Model
Analysis Methodology
for Concurrent
Systems Based on
Genetic Algorithms.”

“An MDA Framework
Supporting OCL”.

“Integration of UML
Views using B Notations.”

KpEM keyphrases uml design models

types of concurrency
concurrency problems
concurrent systems
model analysis
design models

deadlock
mdd

uml

spt

template-based code

generator

functional programming
language

model repository
model transformations

code generation

mda framework
mda

verification

ocl

uml/ocl

communication between
state-charts

class operation
dependency

abstract machine
use cases

class operations

formal specification
uml

refinement
concepts
translation

ORE tags: object-oriented design understandable source elicitation techniques
code techniques

One-to-one object-oriented design software design notations aggregation models
ontology software design coding software design notations
mappings methodology

software design notations software design
methodology

software testing
formal specification

language

ORE tags: software design strategies software construction software requirements
and methods

Common
ancestors

software design software design

The automated evaluation procedure utilized for assessing the quality of the
KpEM tag recommendation is not suitable to properly measure the performance of
ORE because it does not take into account any form of knowledge that is not pre-
sented in the documents themselves. Thus, the results have been manually validated
by human experts in the field of software engineering. Even in the absence of an
automated evaluation procedure, the approach used by ORE seems appropriate to
integrate the type of knowledge used by other PIRATES modules and expressed
by tags. Our preliminary results show how ORE is capable to infer new semantic-
related knowledge that cannot be inferred looking only the textual content of the
documents. This is clearly a challenging task. Looking at the results sampled in
Table-V, the ORE preliminary performance seems to be promising. To completely
assess the quality of the ORE tag recommendations, an experimentation involving
a larger data set and more participants (groups of both students and experts in the
field of software engineering) is in progress.
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7. CONCLUSION AND FUTURE WORK

In this paper, we have presented an innovative and hybrid approach for auto-
matically recommending content-based tags using keyphrases and ontologies. The
keyphrase extraction works on a single document without any previous parameter
tuning; a navigation strategy on ontology identifies meaningful ancestors for relevant
extracted keyphrases and recommends them as new possible tags.

Further work will focus on the evaluation procedure. Relatively to KpEM, we
assumed here that a keyphrase extraction system is optimal, if it provides the same
keyphrases that an author defines for his (her) documents. However, in general there
may exist many other keyphrases (different than those preassigned by authors) that
are also appropriate for summarizing a given document. Relatively to ORE, we are
working to involve a group of human experts to assess the quality of keyphrases
generated using the ontology. Another aspect to consider is that domain ontologies
are generally difficult to obtain. To limit this problem, we are planning to exploit
publicly available search services tailored to automatically find ontologies, such as
Swoogle,m OntoSearch,n SHOE,o or ECHOS.p

Thus, a further aspect to consider is to take into account the human subjectivity
in assigning keyphrases, considering also adaptive personalization techniques for
tuning the extraction process to the specific user’s interests.

Finally, for the future work, we plan to investigate different ways to compute
the coefficients of linear combination of features. We also need to concentrate on a
better way to decide the number of keyphrases to be extracted by the system, instead
of using a fixed number.

Summarizing our future research will be addressed on three main objectives:

• emphasize the aspects related to the personalization of the recommending process;
• generalize the proposed tag recommendation approach, to automate the extension of an

ontology on the basis of user choices and preferences;
• refine the evaluation procedure, executing several real-life experiments involving volun-

teers in order to include in our evaluation also the human subjectivity to better measure
the effective performance of the recommender system;

• investigate different ways to assign opportune parameters for the keyphrase extraction
module, related, for example, to the coefficients to be used for the linear combination of
features, and to the number of keyphrases to be extracted.
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