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Functional and Teleological Knowledge in the 
Multimodeling Approach for Reasoning About 
Physical Systems: A Case Study in Diagnosis 
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Abstract-This paper first presents the basic concepts of the 
multimodeling approach to the representation of physical sys- 
tems. The key point of this approach is the exploitation of many, 
diverse models of a system for the execution of complex prob- 
lem solving tasks, such as interpretation, diagnosis, design, 
simulation, etc. The considered models are based on different 
ontologies, representational assumptions, epistemological types, 
and aggregation levels. After a brief survey of the techniques 
adopted for representing structural and behavioral knowledge, 
attention is focused on function and teleology. A novel ap- 
proach is proposed for defining, representing, and using these 
two types of knowledge which play a fundamental role both 
from the representation and reasoning perspectives. The fun- 
damental claim here is that while teleological knowledge con- 
cerns the specific purposes for which the system has been de- 
signed, functional knowledge is devoted to bridge the gap 
between such abstract purposes and the actual structure and 
behavior of the system, through the concepts of phenomena, 
processes, and functional roles. Moreover, the paper provides 
a clear definition of all the various epistemological and onto- 
logical links existing between the different models, which allow 
the execution of complex reasoning activities by cooperation 
among all the models. Finally, the proposed approach is ap- 
plied to the specific task of diagnosis. An experimental system 
called DYNAMIS is described, which has been used as a testbed 
for original diagnostic strategies exploiting the problem solving 
power offered by the multimodeling approach and, in particu- 
lar, by functional and teleological knowledge. Three sample di- 
agnostic sessions with DYNAMIS are illustrated, which focus 
on the issues of operator diagnosis, diagnosis focusing, and 
functional conflict recognition. 

I.  INTRODUCTION 
ODEL-BASED reasoning has been, in the last de- M cade, a very active research field. The major efforts 

have concentrated on paradigms for qualitative modeling 
and qualitative reasoning about physical systems [8 11. 
Milestones of this research field are the component-based 
approach of ENVISION [25], the process-based approach 
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of qualitative process theory [32], and the constraint-based 
approach of QSIM [49], [51], 1541. All these approaches 
have exploited structural and behavioral knowledge in or- 
der to support a variety of tasks, such as prediction, di- 
agnosis, causal explanation, and design 191, [45], [82]. A 
commonly referenced principle for device modeling using 
structural and behavioral knowledge is the “no function 
in structure” principle [25], which states that the behav- 
ior of a system should be described without considering 
its potential functionalities or intended use, i.e.,  in a con- 
text independent way. Accordingly, past work on quali- 
tative modeling does not deal explicitly with function and 
teleology. The only exception is represented by the teleo- 
logical analysis proposed in [24]. More recently, some 
researchers deliberately renounced the ‘‘no function in 
structure principle” and focused on theories of qualitative 
reasoning based on the use of knowledge about functions 
and goals [28], [33], [47], [48], [71], [75]. The main 
claim of these approaches is that functional and teleolog- 
ical knowledge can provide important additional infor- 
mation for understanding and reasoning about the struc- 
ture and the behavior of a system. 

At the same time, increasing attention was devoted to 
the issue of cooperation of multiple models of the same 
system in order to improve the effectiveness and effi- 
ciency of reasoning processes. Literature proposals span 
a wide range of possibilities and perspectives: using 
models of different aggregation levels [22], [36], [58], 
[66] or featuring different approximations [3], [50], [80]; 
using different ontologies [21], [39], [57], 1651; repre- 
senting variable values at multiple resolutions and using 
different behavioral qualitative and quantitative models 
1351, [61], [64]; and, finally, using multiple types of 
knowledge to support specific reasoning tasks, such as su- 
pervision and control [35], [67], diagnosis [ 11, [ 161, [3 11, 
[60], and design [lo],  [15], [33], [37]. These research 
directions have been strongly supported by cognitive mo- 
tivations. In fact, experimental activity in the cognitive 
field provides substantial evidence that human experts 
typically use multiple representations in complex problem 
solving tasks and are able to switch from one represen- 
tation to another whenever appropriate [5], [ 171, [52], 
[53]. Several open issues still exist with these approaches. 
First of all, no clear and organic framework has been pro- 
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posed, so far, to support a disciplined, effective, and co- 
herent representation of different models of the same sys- 
tem. Although some progress in this direction has been 
made-consider, for example, the work reported in [29], 
[30], and [55]-the proposed solutions are weak from a 
methodological point of view. None of the above men- 
tioned approaches takes the issue of cooperation of many, 
diverse models as the epistemological foundation for the 
design of general and powerful reasoning mechanisms, 
nor exploits the consequences of multiple modeling with 
full generality. More specifically, the question of how 
partial results obtained within a model can be exported to 
other models, in order to progress in the problem solving 
activity, has been tackled only in very specific situations. 

In recent years we have proposed a novel methodology 
for the representation of physical systems, called multi- 
modeling [ l l ] ,  [13], [18], [19], [38]. This approach is 
based on the key idea of considering the task of reasoning 
about a physical system as a cooperative activity which 
exploits the contribution of many diverse models, each 
one encompassing a specific type of knowledge and rep- 
resentation. In this frame, several critical problems have 
been studied, including the design of a general framework 
suitable for supporting multiple modeling, the represen- 
tation languages appropriate for the various models, the 
specific reasoning tasks which can be performed within 
each model, and the cooperation strategies used to inte- 
grate the contributions of the different models into the 
overall problem solving task. Particular attention. has been 
devoted to the investigation of the relationships among 
different models: the links between different representa- 
tions, the ways for ensuring that the set of available 
models consistently describe the physical system consid- 
ered, the mechanisms for exporting partial results from 
the model where they have been obtained and importing 
them into the model where they will be exploited. 

In this paper we focus on the representation and use of 
teleological and functional knowledge in the frame of the 
multimodeling approach. Although it is widely recog- 
nized that teleological and functional knowledge play a 
fundamental role in understanding the behavior of physi- 
cal systems and reasoning about them, the problem of how 
to represent and use it effectively has been confronted only 
in a partial and inadequate way. Moreover, among the 
approaches exploiting the use of multiple models, the 
consideration of functional and teleological knowledge is 
relatively new and no cohesive theory has been proposed 
yet to integrate these models together with structural and 
behavioral knowledge. The main goal of this paper is to 
illustrate the nature of functional and teleological knowl- 
edge, discussing the relationships existing between func- 
tion and teleology, and their role in supporting complex 
reasoning tasks. 

In order to illustrate the advantages and limitations of 
the multimodeling approach in a realistic task we have 
considered the diagnostic problem. Diagnosis has been 
widely studied in the past in the field of model-based rea- 
soning and several approaches have been proposed [22], 

[23], [26], [36], [68]. Model-based diagnosis has been 
proposed to overcome the deficiencies (brittleness, device 
dependence, limited explanation power, lack of general- 
ity, etc.) shown by the early diagnostic systems based on 
surface knowledge [20], [41], [46], [59], [72] by exploit- 
ing principled knowledge about the structure and behavior 
of the system. In this frame, a primary role has been 
played by the consistency based theory of diagnosis [26], 
[27], [68], [77]. This theory which defines a diagnosis to 
be a minimal set of components-assuming that each of 
these components is faulty-together with the assumption 
that all other components are behaving correctly, is con- 
sistent with available observations about actual system 
behavior. Considerable research has been focused on the 
computation of all possible diagnoses using a model of 
the system to be diagnosed, which accounts only for the 
normal behavior of its components. Although this ap- 
proach to model-based diagnosis provides an elegant and 
general framework for diagnostic reasoning, a number of 
open problems remain to be addressed. First, model-based 
diagnosis, focusing only on structural and behavioral 
models, features a very high computational complexity 
when applied to real world systems with hundreds or 
thousands of components. Second, the consistency based 
definition of diagnosis may provide diagnoses which are 
logically acceptable but physically meaningless [77]. 
Third, the consistency based approach is scarcely plausi- 
ble from a cognitive point of view: modeling principles 
and reasoning algorithms proposed are only loosely con- 
strained by the way human experts actually solve diag- 
nostic problems. In the multimodeling approach, the use 
of functional and teleological knowledge, in addition to 
structural and behavioral, allows some of the above lim- 
itations to be overcome by providing more abstract mech- 
anisms for focusing diagnosis, for avoiding erroneous 
(i.e., not physically founded) diagnoses, and for accom- 
plishing a better cognitive adequacy. 

11. THE MULTIMODELING APPROACH 
A .  Motivations and Requirements 

Several of the approaches so far proposed for the rep- 
resentation and reasoning about physical systems suffer 
from two main limitations: 

Although based on formally sound and powerful 
theories, they are scarcely plausible from a cogni- 
tive point of view: modeling principles and reason- 
ing algorithms are only loosely constrained by the 
way humans actually solve problems. Therefore, 
their problem solving power is often spoiled by their 
scarce capability of producing acceptable justifica- 
tions, both in the case of successful reasoning and 
of failure. 
Although supported by effective reasoning strate- 
gies in specific problem domains of limited com- 
plexity, they are generally weak at dealing with 
large and complex systems, as most real artifacts 
and natural systems usually are. 
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We claim that these two limitations are not independent 
from each other: adding a sound cognitive background to 
the way computer programs reason about physical sys- 
tems can greatly contribute to improve, not only their 
transparency and their cognitive coupling, but also their 
effectiveness and efficiency. Accordingly, the following 
specific requirements turn out to be of primary importance 
for a computer program devoted to reasoning about a 
physical system: 

representation adequacy-the capability of appro- 
priately supporting the representation of many di- 
verse, large, and highly structured knowledge 
sources (models) about a physical system; 
problem-solving power-the capability of exploiting 
the various knowledge sources available in a coop- 
erative and effective way for problem solving tasks; 
problem solving economy-the property of using only 
the relevant and necessary knowledge in any step of 
a problem solving task; 
multiple use of knowledge-the possibility of ex- 
ploiting the same knowledge sources for a large va- 
riety of problem solving tasks, such as interpreta- 
tion, diagnosis, design, simulation, etc. ; 
cognitive coupling-the capability of ensuring that 
the computational models and reasoning mecha- 
nisms implemented in the system can be assumed as 
plausible (partial) representations of the mental 
models and processes of a human reasoner; 
efici ncy-the capability of dealing with large and 
complex problems using limited computing re- 
sources. 

The main point in this list is certainly the requirement 
about the availability and use of a large variety of knowl- 
edge sources (models) about the physical system which is 
the object of the reasoning activity. In fact, it is widely 
recogni--ed that no single model is adequate for a wide 
range of problem solving tasks. For example, design op- 
timization problems may be very difficult using structural 
or behavioral knowledge, but can be greatly simplified 
resorting to functional knowledge, which can support rea- 
soning about alternative system structures [33] .  On the 
other hand, however, behavioral and structural models are 
needed for all types of analytic tasks, such as simulation 
or diagnosis [lo],  [ 2 2 ] ,  [ 2 5 ] .  Moreover, it is known [67] 
that adopting a single model generally conflicts with an 
economic use of knowledge and a high cognitive cou- 
pling. Finally, experience has shown that the computa- 
tional effort needed to achieve a specific goal (for exam- 
ple, in the case of envisioning, the prediction of all 
possible behaviors of a system) grows very fast (exponen- 
tially, in the example considered) with the number of vari- 
ables of the model. Efficiency cannot be achieved, in gen- 
eral, using only one model: an appropriate problem de- 
composition and the cooperation of a variety of knowl- 
edge sources organized at different levels of aggregation, 
and accessible under appropriate views is possibly the only 
way of adequately coping with complexity issues [ 2 2 ] ,  
[29], [30], [36], [76]. According to the above stated re- 

quirements, we have proposed in recent years a novel 
methodology for the representation of physical systems 
called multimodeling [ 1 11, [ 181. The multimodeling ap- 
proach is characterized by the representation of many di- 
verse, explicit models of a system which are used in a 
cooperative way in specific problem solving tasks as it 
will be illustrated in the following sections. Note that the 
fundamental assumptions about knowledge modeling and 
reasoning mechanisms, which characterize the multimod- 
eling approach, do not identify a unique way of repre- 
senting a physical system and reasoning about it. On the 
contrary, the multimodeling approach is an abstract and 
general framework which allows for a variety of concrete 
implementations. When a specific application domain is 
considered, several decisions remain to be made in defin- 
ing the particular instance of the multimodeling approach 
which is considered appropriate for the considered case. 

B.  Knowledge Modeling 
The concept of model we assume here is that of a sym- 

bolic system designed to provide a representation of a 
physical system appropriate for a given purpose. So, a 
model is only a partial representation of reality and de- 
pends on subjective decisions of the model designer. In 
particular, modeling requires going through four funda- 
mental choices concerning ontologies, representational 
assumptions, epistemological types, and aggregation lev- 
els. These concepts are illustrated in detail below. 

I )  Ontologies: Building a model requires a commit- 
ment about the kind of entities we assume the real system 
is made up of and that the model must designate. This 
decision defines the ontology of the model. We distin- 
guish between two main ontologies: 

1) Object centered ontology assumes that reality is 
made up of individual objects whose properties can 
be stated in an objective, context independent, and 
general way. This ontological perspective enforces 
modularity and reusability of the representation. 
According to the granularity of the individual ob- 
jects we assume reality is made of, we further dis- 
tinguish between 1) macroscopic ontologies, which 
assume that reality is made up of individual mac- 
roscopic objects, and 2) microscopic ontologies, 
which assume that reality is made up of elementary 
individuals at an atomic or molecular level. 

2) System centered ontology assumes that reality is 
made up of systems, intended as organized units, 
whose elements cannot be defined in isolation. This 
ontological perspective enforces the representation 
of a system in terms of specific and context depen- 
dent properties. 

The component-centered approach [25] to qualitative 
modeling of physical systems is a good example of a the- 
ory based on a macroscopic object-centered ontology. The 
charge-carrier ontology [57] and the microscopic theories 
used in [65] for reasoning about physical systems at the 
molecular level are examples of microscopic object-cen- 
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tered ontologies. Examples of the use of a system-cen- 
tered ontology can be found in the functional modeling 
approaches [48], [67], [7 11. 

In some cases, both ontologies may be present in a 
model, such as for example, in the process-centered ap- 
proach [32], developed on top of the component-centered 
approach [25] by modeling explicitly not only individual 
components, but also the processes acting on them. An 
ontological perspective which mixes aspects of both ob- 
ject-centered and system-centered ontologies is called a 
hvbrid ontology. 

Models of the same system based on different ontolo- 
gies can be related to each other through ontological links, 
which explicitly connect corresponding knowledge ele- 
ments in different ontologies. 

2) Representational Assumptions: Another early de- 
cision to be made in the modeling activity concerns what 
to represent of the real system in the model. This decision 
involves two basic aspects: 

the scope of the model, Le., the aspects of the real 
system which are considered relevant to the purpose 
of the model and, therefore, must be included in the 
representation; 
the precision of the model, i .e . ,  the degree of accu- 
racy of the representation. 

These choices are referred to as representational as- 
sumptions. Different representational assumptions lead to 
different models of the same system which are called ap- 
proximations. Note that scope and precision are inde- 
pendent dimensions of an approximation: we may have 
models with the same scope but featuring different pre- 
cision (for example, a behavioral quantitative model of a 
system and its qualitative version), and models having the 
same precision but different scopes (for example, models 
which consider or do not consider friction, or models 
which assume or do not assume the hypothesis of rigid 
body). Models of the same system based on different rep- 
resentational assumptions can be related to each other 
through representational links, which explicitly specify 
i) the representational assumptions that must be added or 
retracted in order to switch from one approximation to 
another 131, and ii) the relationships connecting corre- 
sponding knowledge elements in different approxima- 
tions. 

In our approach, the scope of a model is organized ac- 
cording to physical views. The concept of physical view 
[76] represents a feature of knowledge organization that 
allows the indexing of the elements of a representation 
according to the physical perspectives they are related to, 
for example, thermal, electrical, mechanical, etc. Physi- 
cal views allow the reasoning process to focus only on 
those parts of the scope of a model which are relevant to 
the current problem solving step, discarding other useless 
details. 

3) Epistemological Types: By epistemological type we 
mean the class of epistemological features the model rep- 
resents about the real system. We consider five episte- 
mological types: 
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Let us note that the five epistemological types defined 
above can be approximately grouped into three cate- 
gories. Structural and behavioral knowledge are funda- 
mental knowledge, Le., basic knowledge used to reason 
about a system using the objective and neutral language 
of natural sciences. Functional and teleological knowl- 
edge are interpretative knowledge, i.e., knowledge de- 
rived from a subjective interpretation of fundamental 
knowledge in terms of functions and goals of system com- 
ponents. This knowledge does not have the same gener- 
ality and objectivity of fundamental knowledge. For ex- 
ample, when we say “component X is devoted to . . .” 
we express a relationship between a system component 
(its structure and behavior) and a goal, which is generally 
not valid for other components of the same type in the 
same or other systems. Finally, empirical knowledge is a 
separate category which concerns explicit statement of 
system properties and may refer to both fundamental and 
interpretative knowledge. 

Models of the same system based on different episte- 
mological types can be related to each other through 
epistemological links, which explicitly connect corre- 
sponding knowledge elements in different models. 

4)  Aggregation Levels: By aggregation level of a 
model we mean the degree of granularity of the repre- 
sented knowledge. For example, a structural model of a 
plant may be represented at the level of major subsystems 
or may be further refined at the level of elementary com- 
ponents. Of course, for a physical system (once represen- 

Structural knowledge-knowledge about system to- 
pology. This type of knowledge describes which 
components constitute the system and how they are 
connected to each other (their adjacency). 
Behavioral knowledge-knowledge about potential 
behaviors of components. This type of knowledge 
describes how components can work and interact in 
terms of the physical quantities, (variables and pa- 
rameters) which characterize their state and of the 
laws which rule their operation. 
Functional knowledge-knowledge about the roles 
components may play in the physical processes in 
which they take part. This type of knowledge relates 
the behavior of the system to its goals, and deals with 
functional roles, processes, and phenomena. 
Teleological knowledge-knowledge about the goals 
assigned to the system by its designer and about the 
operational conditions which allow their achieve- 
ment through correct operation. This type of knowl- 
edge concerns the high level reasons which are be- 
hind the system concept and which have determined 
its actual structure. 
Empirical knowledge-knowledge concerning the 
explicit representation of system properties through 
empirical associations. This type of knowledge may 
be derived from observation, experimentation, and 
experience, and may include, in particular, the sub- 
jective competence that usually human experts ac- 
quire through direct interaction with a system. 
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tational assumptions have been defined and specific on- 
tologies and epistemological types have been chosen) 
several models featuring different aggregation levels may 
generally be identified. 

Models of the same system based on different aggre- 
gation levels can be related to each other through aggre- 
gation links, which explicitly connect corresponding 
knowledge elements in different models. 

In the multimodeling approach any choice about ontol- 
ogy is allowed, as well as any kind of representational 
assumptions, epistemological types, and aggregation lev- 
els. The only restrictions we impose to the organization 
of models are the following: 

1) Models are separate-any individual model may 
encompass only one specific choice about ontology 
(possibly a hybrid ontology), representational as- 
sumptions, epistemological types, and aggregation 
levels; 

2) Models must be interconnected-any individual 
model must be explicitly and appropriately inter- 
connected to the others with appropriate ontologi- 
cal, representational, epistemological or aggrega- 
tion links. 

As far as 1) is concerned, note that its primary moti- 
vation-in addition to the generic issue of modularity-is 
the requirement of multiple use of knowledge. In fact, 
according to the specific problem solving task considered, 
different types of knowledge may be useful in different 
moments and with different roles, and, therefore, their 
representation must be as far as possible separate. Note 
that this assumption is not shared by several authors who 
allow knowledge of different epistemological types (for 
example, structural and behavioral or functional and be- 
havioral) to be mixed together within a single model [ 161, 

As far as 2) is concerned, its primary motivation is the 
requirement of effective use of available knowledge in a 
cooperative way. Note that models are not required to be 
complete: they can represent only parts of a system. 

~ 5 1 ,  [321. 

C. Reasoning Mechanisms 
The execution of a problem solving task (for example, 

interpretation, diagnosis, design, simulation, etc.) within 
the multimodeling approach is based on two fundamental 
mechanisms: 

1) Reasoning inside a model, which exploits knowl- 
edge available within a single model by using basic 
reasoning utilities provided by the model; and 

2) Reasoning through models, which supports oppor- 
tunistic navigation among models in order to allow 
each individual step of the problem solving activity 
to exploit the most appropriate knowledge source. 

The overall reasoning process is then constituted at the 
domain level, by a sequence of “reasoning inside a 
model” steps which are guided at the control level, by a 

‘‘reasoning through models” activity, which continu- 
ously monitors and directs the use of knowledge at the 
domain level. This clearly requires that appropriate mech- 
anisms for translating (exporting and importing) partial 
results from one model to another are available. 

The control regime of the “reasoning through models” 
mechanism is determined by two main types of knowl- 
edge which are described below. 

1 )  Knowledge About the Tasks the System is Requested 
to Solve: The multimodeling approach is, in principle, 
suitable to reasoning about a large variety of tasks, such 
as interpretation, diagnosis, design, etc. When the rea- 
soning mechanism is tailored to a specific application, 
knowledge about the involved task and the relevant task- 
specific problem solving methods has to be provided [ 141, 
[74]. These are used for decomposing the task at hand 
into subtasks until elementary tasks are identified, which 
can be solved by exploiting appropriate models-based 
problem solving methods specifying the execution of basic 
reasoning utilities provided by the models. 

2) Knowledge About Efective Exploitation of Avail- 
able Domain Level Knowledge: During system operation 
several control problems must be solved concerning the 
most suitable use of models. These include: 

Choosing the most suitable model to be used for 
solving an elementary task, when several alternative 
models (for example, based on different aggregation 
levels or on different representational assumptions) 
are available (initial model selection); 
Selecting a new model where the reasoning activity 
can continue after a failure has occurred during the 
execution of a basic reasoning utility (failure-driven 
model selection); 
Monitoring the execution of a models-based problem 
solving method and deciding when it might be ap- 
propriate to switch from the currently used model to 
another which is supposed to be more suitable to 
continue the reasoning activity (opportunity-driven 
model selection); 
Determining the appropriate focus of attention for the 
current step of the reasoning process by activating 
the relevant physical views and choosing the most 
appropriate part of the model to work upon ybcus 
control). 

For all these problems, appropriate control knowledge 
must be provided when a specific application is devel- 
oped. 

D.  Comparison of the Multimodeling Approach With 
Related Work 

In recent years several research efforts have been spent 
to address the issue of physical system modeling with 
multiple representations. However, most of these ap- 
proaches focus only on one type of models such as be- 
havioral models [%], or are stated in very general terms 
[2], or refer to specific tasks such as design [37]. A pro- 
posal which is close to ours is compositional modeling by 
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Falkenhainer and Forbus [29], [30]. Compositional mod- 
eling is a technique for organizing multigrain, multiper- 
spective models of physical systems (more specifically of 
physical phenomena) in order to manage complexity. Al- 
though we share the same broad intention, there are im- 
portant differences between the two approaches: 

Compositional modeling mainly focuses on model- 
ing. The goal is to automatically and dynamically 
construct a system model (called a scenario model) 
by instantiating and composing together general 
purpose domain models and using the current task 
for guidance. Although automatic modeling is a very 
important issue, our work is, at present, mainly fo- 
cused on the different issues of integration and co- 
operation between different models. 
Compositional modeling proposes an organization 
of domain knowledge that allows controlling gran- 
ularity, ontology, approximation, and perspectives 
(perspectives are similar to views) by the use of 
simplifying assumptions. However, the framework 
is limited to the consideration of only fundamental 
knowledge: other types of knowledge such as teleo- 
logical and empirical are simply not allowed. 

Recently, some authors [lo], [33], [79] proposed a rep- 
resentation approach for physical systems which, like 
multimodeling, maintains a clear separation between 
knowledge of structure and behavior on one side and 
knowledge of function or purposes on the other side. Fur- 
thermore, these approaches, like multimodeling, are do- 
main independent and can be reused unaltered for several 
applications including design, simulation, diagnosis, and 
explanation. The main difference is in the absence of a 
physical foundation for the relationships existing among 
the different models, more specifically, the relationship 
between behavior and teleology which, in our approach, 
is represented by functional knowledge (see Sections V 
and VI). In particular, the FBS (Function Behavior State) 
Diagram proposed by Umeda et al .  [79] as a modeling 
strategy, although based on some common goals (for ex- 
ample, to rigorously define concepts of function and be- 
havior, to provide a unified framework in which funda- 
mental and interpretative knowledge are integrated, to deal 
with structural and functional hierarchies), does not con- 
sider the problem of reasoning with multiple models as 
the central issue of the approach. Moreover, the proposal 
is stated in general terms and lacks an explicit theory for 
the representation of systems, i.e., a specification of 
which modeling primitives and which relations should be 
used to represent both fundamental and interpretative 
knowledge, how these two types of knowledge have to be 
related, etc. 

111. FUNDAMENTAL KNOWLEDGE: STRUCTURAL AND 

BEHAVIORAL MODELS 
A. The Structural Model 

The structural model focuses on the topology of a sys- 
tem; it describes which parts constitute the system and 
their interconnections [ 181. Interconnections are intended 

here in the general sense of physical adjacencies, i.e., 
possible pathways for interaction [22]. The structural 
model is based on the object-centered ontology and it is 
represented using the following three primitives: 

Components represent the physical entities that con- 
stitute the system and determine its behavior. Ex- 
amples of components are solid objects such as 
electronic devices or mechanical parts, but also fluid 
entities such as the air between the sheets of an in- 
sulator, or the water flowing in a hydraulic circuit. 
Components have terminals, which are passive 
channels supporting possible interactions with the 
outside environment. A terminal supports just one 
kind of physical interaction (for example: thermal, 
electrical, mechanical, etc.) which identifies its 
type. 
Nodes are used to connect together two or more 
components. A node has two or more terminals, all 
of the same type. Nodes do not correspond to any 
physical entity present in the modeled system: their 
only purpose is to provide an explicit representation 
of the possible connections among components. 
Connections describe how components are con- 
nected together through appropriate nodes. More 
specifically, a connection is a declaration of identity 
between two terminals of the same type: one of a 
component and one of a node. Connections are un- 
directed links. 

The structural model of a system is made up of a col- 
lection of components and nodes: each node terminal must 
be linked through a connection to a component terminal 
of the same type. 

In order to illustrate the above concepts let us introduce 
here a sample system which will be used throughout Sec- 
tions 1.11, IV, V, and VI. The system considered is a sim- 
plified version of a temperature gauge [62]. The schema 
of the device is represented in Fig. 1 .  It consists of a bat- 
tery, a switch, a wire, a bimetallic strip, a thermistor, and 
a pointer on a scale. Its operation is quite intuitive. The 
temperature to be measured is sensed by the thermistor 
which is sensible to temperature changes: a small increase 
of the temperature causes a large decrease of its resistance 
and vice versa. If the switch is closed (i.e.,  the gauge is 
operating), the resistance of the thermistor determines a 
current in the circuit, which in tum causes heat to be gen- 
erated by the wire and transferred through air to the bi- 
metallic strip. This is constituted by two strips made of 
different metals welded together: temperature changes 
cause the two strips to expand differently, causing the bi- 
metallic strip to bend. Therefore, the temperature of the 
bimetallic strip determines its bending, which eventually 
determines the angular position of the pointer on the scale. 

Fig. 2 shows two structural models of the temperature 
gauge at two different aggregation levels: STR-0 and 
STR-1. The component AR in the structural model STR- 
1 refers to the air between the wire WR and the bimetallic 
strip BS, which allows a heating exchange among them. 
Aggregation links between structural models of different 
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Fig. 2 .  Structural models of the temperature gauge. 

aggregation levels relate the terminals of the representa- 
tion of a component in a model with the corresponding 
terminals of the representation of the same component in 
the finer or coarser model. The physical view mechanism 
is realized in the structural model through terminal types: 
a physical view is identified by the set of terminals of a 
given type. Note that since aggregation links relate typed 
terminals, physical views extend across all available 
models of different aggregation levels. 

B. The Behavioral Model 
The behavioral model is devoted to represent the po- 

tential behavior of a system; it describes how components 
operate and interact with each other through relationships 
among physical quantities [ 181. The behavioral model 
makes it possible to generate the actual behavior of the 
system, in terms of the sequence of values system quan- 
tities assume over time. The behavioral model is based on 
the object-centered ontology and is represented using the 
following three primitives: 

1) Physical quantities are the basic entities used to 
capture the nature, the state, and the behavior of a 
system. They can be grouped into three classes: 
a) constants are independent from time and from 

the specific system being modeled (for example, 
gravitational acceleration, light speed in the vac- 
uum, Boltzmann constant, etc.); 

b) parameters represent specific attributes of a 
component, for example, the section of a pipe, 
the thickness of an insulator, the thermal con- 
ductivity of a material, the density of a fluid, 
etc.; 

c) variables characterize the state of a component 
with reference to the physical phenomena in 
which it can take part (for example, the temper- 
ature of a substance, the voltage drop across a 
resistor, the pressure of a fluid, etc.). 

Physical quantities may assume either quantita- 
tive or qualitative values [49] and have an associ- 
ated type which characterizes the physical domain 
to which they refer. So, for example, temperature 
and heat flow are thermal variables, while tension 
and electrical current are electrical ones; resistance 
is an electrical parameter, etc. 

2) Physical equations represent the relationships exist- 
ing among physical quantities and characterizing the 
potential behavior of a component or of a node. 
Their role is to constrain the possible values the 
physical quantities can assume over time. 
Two main types of physical equations have been 
identified, namely: 
a) structural equations are relationships that do not 

involve parameters; structural equations usually 
represent general principles of conservation 
(balance equations), such as the Kirchhoff prin- 
ciples in the electromagnetic domain and the 
equilibrium equations in mechanics, or represent 
definitions of new concepts (deBnitiona1 equa- 
tions), such as the concept of velocity defined as 
u = dx/dt  in mechanics; 

b) phenomenological equations represent relation- 
ships that do involve parameters; they represent 
physical laws either characterizing a single spe- 
cific physical domain (constitutive equations) or 
establishing relationships between different 
physical domains (coupling equations) ; for ex- 
ample, Ohm’s law is a typical constitutive equa- 
tion in the electromagnetic domain, while See- 
beck’s law is a typical coupling equation which 
bridges electrical and thermal variables. 

Physical equations can be described either quan- 
titatively or qualitatively [491. 

3) Operating modes provide a representation of mu- 
tually exclusive operating regions of a component 
[25], for example, the active, saturation or cutoff 
regions of a transistor; an operating mode is de- 
scribed through l )  a set of relations among physical 
quantities, called characteristic condition, which 
specify the ranges of variables values within which 
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the component can be assumed to be in the consid- 
ered operating mode, and 2) the set of physical 
equations which represent the component behavior 
in that mode. 

Since the concept of actual behavior of a system refers 
to temporal sequences of states where a state is intended 
as the vector of all instantaneous values of system quan- 
tities in a specific time instant, a temporal model is 
needed. In the case of quantitative models, we assume 
that there exists a continuous time line, isomorphic to the 
real axis, and that a mapping between time points and 
system states can be defined. In the case of qualitative 
models, we assume the qualitative ontology of time pro- 
posed by Kuipers [49]. 

The behavioral model of a system is made up of a col- 
lection of physical quantities and physical equations hold- 
ing among them. The physical equations are possibly or- 
ganized according to a set of operating modes. Physical 
views are realized by clustering the physical equations in 
the model according to the types of the quantities in- 
volved. These clusters are then indexed by the views to 
which they refer. 

Aggregation links between behavioral models of differ- 
ent aggregation levels are described through structural 
equations relating physical quantities of the representa- 
tion of a component in a model with the corresponding 
quantities of the representation of the same component in 
a finer or coarser grained model. 

The epistemological link between behavior and struc- 
ture is realized by associating behavioral primitives 
(physical quantities, physical equations, and operating 
modes) to structural ones (terminals, components, and 
nodes). 

Considering again the example of the temperature 
gauge, Fig. 3 shows four behavioral models: BEH-0, 
BEH-1.1, BEH-1.2, and BEH-1.3. BEH-0 represents the 
device at the highest aggregation level while BEH-1.1, 
BEH-1.2, and BEH-1.3 show a finer aggregation level. 
All the models are based on the object-centered ontology. 
However, BEH-1.1 and BEH-1.2 show different approx- 
imations based on a macroscopic ontology (approxima- 
tion A2, for example, includes thermal effects on resis- 
tance R l  , which are ignored in approximation Al) ,  while 
BEH-1.3 is based on a microscopic ontology (the physical 
equations used are a qualitative version of the well known 
Maxwell laws of the electrodynamic theory). Fig. 3 also 
shows the links existing between the models: aggregation 
links between BEH-0 and the three finer models BEH- 
1.1, BEH-1.2, and BEH- 1.3; representational links be- 
tween BEH-l. l and BEH-1.2; ontological links between 
BEH-1.3 (microscopic ontology) and BEH-1.1 and BEH- 
1.2 (macroscopic ontology), and, finally, epistemological 
links relating all behavioral models to structural ones. 
Note that links may describe complex relationships be- 
tween the entities represented in the models. In the above 
example, the ontological link between BEH- 1.3 and BEH- 
1.1 is described by a set of equations. These equations 
relate changes in macroscopic entities (such as the voltage 

drop V4-V5 and the electrical current I3 represented in 
BEH-1.1) to changes in microscopic entities (such as the 
electrical field E l  and the current density j3) represented 
in BEH-1.3. 

C. Reasoning With Structural and Behavioral 
Knowledge 

Structural knowledge may be used to obtain informa- 
tion about the connectivity of the modeled system. The 
only model-specific basic reasoning utility available in the 
structural model is “path finding.” PathJinding finds all 
paths-made up of components, terminals, nodes, and ag- 
gregation links-between any pair of components. Path 
finding is affected by the physical view mechanism: once 
a specific focus of attention has been determined, the paths 
obtained contain only components, terminals, nodes and 
aggregation links belonging to the selected views. 

Three basic reasoning utilities are available for behav- 
knowledge. These- are briefly illustrated below: 

Behavioral prediction infers the future states of a 
system (or of a subsystem) given its actual state and 
a perturbation of this state. Behavioral prediction is 
performed by numerical simulation in the case of 
quantitative models and by qualitative simulation 
when qualitative models are used [49]. 
Causal dependency analysis finds all variables 
whose possible deviations may influence a given 
variable. Parameters are considered as constants that 
could be neglected. The method we used for causal 
dependency analysis is based on causal ordering [6], 
[45], and assumes a stationary equilibrium state of 
the system. 
Sensitivity analysis finds all parameters whose pos- 
sible deviations may influence a given variable. 
Causal dependency analysis is similar to sensitivity 
analysis in that it is based on causal ordering. 

D. Comparison with Related Work 
The concept of structural model introduced above in- 

cludes several ideas originally developed in [25] and [22]. 
However, some basic differences are worth stressing: 

System constituents are not classified into materials, 
components, and conduits. This characterization, 
which is based on functional knowledge, is captured 
and generalized in the multimodeling approach 
through the concepts of functional role and gener- 
alized substance (see Section V-B). 
In the above mentioned approaches, terminals are 
simple component attributes, which describe chan- 
nels of possible interaction with the outside world. 
In the multimodeling approach, terminals are typed 
objects, which exactly characterize the class of in- 
teractions they can support (electrical, thermal, me- 
chanical, etc.). Only terminals of the same type can 
be connected together, so type checking can help to 
avoid or identify inconsistent connections. 
The concept of node is used to represent connec- 
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tions among components. This makes the structural 
model more explicit and transparent. 

In defining the behavioral model the work reported in 
[25] and [49] has been taken as a starting point. The main 
difference is that, in the multimodeling approach, a clear 
separation between parameters and variables is intro- 
duced, and, as a consequence, between constitutive and 
structural equations. This distinction allows specification 
of explicit epistemological links between the behavioral 
and structural models. Moreover, physical views are not 
considered at all in the above mentioned approaches. 

IV. INTERPRETATIVE KNOWLEDGE: OPEN PROBLEMS 
Interpretative knowledge derives from an interpretation 

of fundamental knowledge in terms of system functions 
and goals. Several problems about the representation and 
use of functional and teleological knowledge may be 
identified in the approaches so far proposed in the litera- 

These are briefly discussed below: 

Difference between function and purpose. For some 
authors the concept of function is strongly related 
to teleology: the function of a system is identified 
by the task the system accomplishes or should ac- 
complish [73], or by its intended use or purpose 
[24], [28], [33], [47], [7 I], [75]. Other authors dis- 
tinguish more accurately between function and te- 
leology and introduce the concept of function as a 
mapping between behavior and teleology. This ap- 
proach is taken in [9], where function is defined as 
the relationship existing between the behavior of a 
system and the goals of a human user. A similar 
position is also proposed in [2], where functional 
knowledge is devoted to link components to the pro- 
cesses in which they take part, and in [67], where 
function is considered an abstraction of behavior, 
performed by taking into account the goals of the 
system, which maps behaviors into processes. 
However, in these approaches the issue of how 
functional and teleological knowledge can be ac- 
tually represented and used is discussed only in very 
general terms and no concrete proposal is presented. 
Relativity of teleological knowledge. The concept 
of purpose of a system is multifaceted and seems to 
escape a precise definition. In fact, teleological 
knowledge does not concem objective features of a 
system but rather its relationship to some extemal 
reference. However, there is no general agreement 
on what should be considered as the reference-the 
user [ l ] ,  the designer [lo],  [33], or somebody else. 
Function primitives. Some authors consider the 
function of a component as an interpretation of its 
behavior in terms of primitive actions that the com- 
ponent performs on substances flowing through it 
[7], [3 11, [56]. These approaches however, raise 
critical problems concerning the concept of func- 
tional primitive: How are they chosen? How can 

4) 

their semantics be specified? How can their expres- 
siveness, completeness, and minimality be evalu- 
ated? 
Relationship between fundamental and interpreta- 
tive knowledge. Most approaches fail to explicitly 
represent the relationships existing between teleol- 
ogy, function, behavior, and structure [67], [71]. 
This is, however, extremely important both for con- 
sistency reasons and for an effective exploitation, in 
the reasoning process, of all available knowledge 
sources. 

In the following two sections we will illustrate how these 
problems have been tackled in the frame of the multimod- 
eling approach. 

V.  REPRESENTATION A N D  USE OF FUNCTIONAL 
KNOWLEDGE 

A. irhe Concept of Function 
In the multimodeling approach, the function of a sys- 

tem is defined as the relationship between its behavior and 
the goals assigned to it by the designer. The concept of 
function is therefore understood as a bridge between be- 
havioral and teleological knowledge [ 121. In a sense, it is 
not a primitive concept (such as structure, behavior or te- 
leology), but a concept which only exists as a relationship 
between two other concepts. 

Accordingly, the functional representation of a system 
is aimed at describing how the behaviors of individual 
components contribute to the achievement of the common 
goal assigned to the system by its designer. Therefore, 
functional modeling mainly focuses on system organiza- 
tion and implies a teleological explanation of behavior; 
hence, the behavior of an individual component is justi- 
fied by looking at the final causes of the system as a whole, 
rather then on the basis of the efficient causes that gen- 
erate it in a mechanistic way [25], [67]. 

Moreover, since the behavioral model is based on the 
object-centered ontology and the teleological model is 
based on the system-centered ontology, the concept of 
function which realizes the transition between these two 
models must share some aspects of both ontologies. 
Therefore, as it will be illustrated in the following sec- 
tions, functional knowledge is represented through three 
kinds of models: the model of functional roles which is 
based on an object-centered ontology, the model of pro- 
cesses which has a two-fold nature since it is based on a 
hybrid ontology, and finally, the model of phenomena 
which is based on a system-centered ontology. In this way 
the mapping between behavior and teleology is realized 
in a gradual way by progressively introducing in the rep- 
resentation knowledge elements which are more and more 
context dependent. The above proposal is not unique; 
other proposals may be acceptable as well, possibly com- 
prising a lower number of intermediate models. The main 
goal of our proposal has been that of a smooth and gradual 
transition. 
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B.  Generalized Interpretation of Behavior 
It is quite common in several physical domains to in- 

terpret the behavior of a system in terms of flow struc- 
tures, i.e., in terms of networks of operators acting on 
substances flowing through the structure of the system, 
such as heat, electrons, liquids, etc. and in terms of the 
forces responsible for their flow, such as thermal gra- 
dient, electrical tension, pressure gradient, etc. This 
interpretation is useful to identify and exploit analogies 
among phenomena pertaining to different physical do- 
mains, but ruled by physical laws featuring the same for- 
mal structure. This is the case of the well known similar- 
ities between thermal conduction in thermodynamics, 
electric conduction in electrodynamics, and laminar flow 
in hydrodynamics, which are all ruled by equations of the 
form y = K i  (the well known Fourier's law, Ohm's law, 
and Poiseuille's law, respectively). 

In our approach, physical variables are classified on the 
basis of the role they play in physical phenomena inter- 
preted as flow structures. From this perspective, it is pos- 
sible to identify two types of generalized variables [25], 
[70] common to different physical domains: 

1 )  Generalized substance ( g s ) ,  represents the abstract 
entities which flow through a system. The concept 
of generalized substance can be further decomposed 
into two subtypes, namely: generalized displace- 
ment ( q )  and generalized impulse ( p ) .  The rationale 
behind this distinction is that substances flowing 
through a system are usually associated with en- 
ergy. Since there are two fundamental types of en- 
ergy, potential and kinetic, we also need two types 
of generalized substances. Thus, generalized dis- 
placement can be intuitively associated with poten- 
tial energy and generalized impulse with kinetic en- 
ergy. 

2) Generalized current ( g c )  represents the amount of 
a generalized substance which flows through a uni- 
tary surface in a time unit, i .e.,  more formally: gc 
= d ( g s ) / d t .  Therefore, according to the type of 
generalized substance which is flowing, we distin- 
guish between generalizedJEow (f) intended as flow 
of displacement (dq /d t )  and generalized efort ( e ) ,  
intended as flow of impulse ( d p / d t ) .  The product e 
* f intuitively represents the amount of energy which 
flows through a unitary surface in a time unit (i.e., 
power). 

Generalized variables are, of course, independent of 
any specific physical domain. When they are specialized 
in a specific physical domain we obtain usual physical 
variables. For example, in the electromagnetic domain, q 
represents electrical charge; p ,  magnetic flux; f, electrical 
current; and e ,  electrical tension. In the rotational me- 
chanical domain, q represents angular displacement; p ,  
angular momentum; f, angular velocity; and e ,  torque. 

After having classified physical variables, it is possible 
to exploit the well known concept of Tetrahedron of State 
(TOS) [63], [70] in order to identify a set of abstract re- 

TETRAHEDRON OF STATE 
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Fig. 4. The organization of the TOS and two sample instantiations. 

lationships among generalized variables, which are called 
generalized equations and are common to a large class of 
physical theories. Fig. 4 presents the organization of the 
TOS and two of its possible instantiations in the mechan- 
ical and electromagnetic domains. 

The TOS comprises five generalized equations among 
the generalized variables q, e ,  p ,  and f .  Two of them are 
structural equations describing the relations between q and 
p and their flows f and e .  The remaining three equations 
are constitutive equations which describe: 

an explicit relationship F l ( e ,  q, C )  = 0 between 
generalized effort e and generalized displacement q, 
involving the parameter C = d q / d e  which repre- 
sents a generalized capacity; 
an explicit relationship F2(e , f ,  R )  = 0 between gen- 
eralized effort e and generalized flow f ,  involving the 
parameter R = de /d f  which represents a generalized 
resistance; 
an explicit relationship F3( f, p ,  I )  = 0 between gen- 
eralized impulse p and generalized effort f, involving 
the parameter I = dp/df  which represents a gener- 
alized inductance. 

Finally, two more generalized equations have been intro- 
duced that are not considered in the original concept of 
TOS: the relationship F4(e, E )  = 0 involving the gen- 
eralized effort e and the parameter E which represents a 
generalized electromotive force, and the relationship 
F 5 (  f ,  F )  = 0 involving the generalized flow f and the 
parameter F which represents a generalized electromotive 
JEow. These equations represent the application of gener- 
alized effort or flow at the boundary of open systems and 
are necessary to represent generators of effort and flow in 
a correct and natural way. 

If the generalized equations appearing in the TOS, in 
particular, constitutive equations, are specialized in a spe- 
cific physical domain we obtain usual physical equations. 
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For example, the generalized equation F2(e,  f, R )  = 0 in 
the electrical domain corresponds to Ohm’s law ( A V  - 
RZ = 0), while in the thermal domain it corresponds to 
Fourier’s law (Q - KAT = 0). 

C. Functional Roles 
The components of a system have a primary role in de- 

termining the flow structures which constitute its func- 
tion, since their behaviors can be interpreted as operators 
on generalized variables. We define the functional role of 
a component as an interpretation of its behavior-more 
precisely, of the physical equations governing its behav- 
ior-aimed at characterizing how the component contrib- 
utes to the realization of the flow structure in which it 
takes part. 

The concept of TOS introduced in the previous section 
can be used as a sound basis for identifying a finite set of 
functional roles, which are assumed to be sufficient for 
interpreting the behavior of a large set of systems of prac- 
tical interest [70]. Nine functional roles can be defined in 
relation to the five generalized equations F 1, F2,  F3 ,  F4 
and F5. Their definitions are reported below. 

From the generalized equation “F2(e,  f, R )  = 0” we 
identify the following five functional roles: 

f-conduit (Cf ): An f-conduit enables a generalized 
flow from one point to another in the structure of a system 
with dissipation of generalized effort. A series-resistor in 
the electrical domain is an instance of an f-conduit since 
it transmits electrical current from one terminal to the 
other, but it dissipates electrical tension (i.e., there is a 
tension drop across the resistor). 

e-conduit (Ce):  An e-conduit enables a generalized ef- 
fort from one point to another in the structure of a system 
with d.issipation of generalized flow. A parallel resistor is 
an e-conduit of electrical tension which dissipates electri- 
cal current, i.e., the electrical current that enters the com- 
ponent at one terminal is not the same that exits the com- 
ponent at the other terminal. 

Note that the concept of conduit embodies the intuitive 
meaning of resistive conduit (or generalized resistor), 
since it transmits without changes only one type of current 
( f o r  e )  but not both together, i.e., it dissipates power. 

purely conductive conduit (CC): A purely conductive 
conduit enables both generalized currents (f and e )  from 
one point to another in the structure of a system, without 
power dissipation. For example, the ideal junction be- 
tween two electrical components can be described using 
a purely conductive conduit, since it features continuity 
of current and compatibility of electrical tension. 

f-barrier (Bf): An f-barrier prevents a generalized flow 
from one point to another in the structure of a system. In 
the electrical domain, for example, an open circuit is an 
f-barrier. 

e-barrier (Be): An e-barrier prevents a generalized ef- 
fort from one point to another in the structure of a system. 
In the electrical domain, for example, a short circuit is an 
e-barrier . 

From the generalized equations “ F l ( e ,  q,  C) = 0” 

and “F3( f, p ,  I )  = 0” we identify the following two 
functional roles, respectively: 

q-reservoir (R“): A q-reservoir (or generalized capac- 
itor) enables accumulation of a generalized displacement, 
q .  A spring in the mechanical domain or a capacitor in 
the electrical domain are examples of q-reservoirs. 

p-reservoir (Rp) :  A p-reservoir (or generalized induc- 
tor) enables accumulation of a generalized impulse p .  A 
mass m which moves with velocity v in the mechanical 
domain, or an inductor in the electrical domain are ex- 
amples of p-reservoirs. 

From the generalized equations “F4(e,  E )  = 0” and 
“F5( f, F )  = 0” we identify the following two functional 
roles, respectively: 

e-generator (Ge): An e-generator causes a generalized 
effort between two points in the structure of a system. 

f-generator (Gf ): An f-generator causes a generalized 
flow from one point to another in the structure of a sys- 
tem. 

Note that of the roles defined above only e-generator 
and f-generator are active roles which denote the capabil- 
ity of a component to cause something, while all others 
are passive roles that can only enable or prevent some- 
thing to occur. 

Two types of relations between functional roles can be 
identified. These are defined below: 

Mutual dependency: two functional roles FRi and 
FRj, which refer to physical equations PEi and PEj 
respectively, are mutually dependent if PEi and PEj 
share a physical variable (direct mutual depen- 
dency) or if there exists a structural equation that 
links a physical variable of PEi with a physical vari- 
able of PEj (indirect mutual dependency). For ex- 
ample, the functional roles associated with two 
electrical resistors connected in series are directly 
mutually dependent since they refer to two physical 
equations (Ohm’s law) that share the physical vari- 
able representing electrical current. The functional 
roles associated to the spring and to the mass of an 
oscillating mass-spring system (without friction) are 
indirectly mutual dependent since they refer to two 
physical equations (F = -kw and p = mu respec- 
tively) which are related by a structural equation (F  
= dp/dt  or u = dx/dt) .  
Znjuence: a functional role FRi, which refers to 
physical equations PEi, influences a functional role 
FRj, which refers to physical equations PEj if a 
physical variable of PEi is a parameter of PEj. For 
example, the functional role q-reservoir associated 
with the screw of a tap influences the functional role 
of the tap viewed as a f-conduit since the amount of 
angular displacement stored in the reservoir is cou- 
pled with the section of the tap. Therefore, it inter- 
acts with the generalized resistance of the tap viewed 
as a conduit. 

Functional roles can be connected together using the 
above relations to yield a graph, called functional role 
network. 
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D. The Functional Role Model 
The functional role model of a system describes the po- 

tential functional roles of its components and the ways the 
functional roles are related. It is represented by a func- 
tional role network. Of course, since functional roles and 
relations are generalized entities, they have to be special- 
ized in the appropriate physical domains when they are 
used to represent a specific system. 

The epistemological link between the functional role 
model and the behavioral one is defined by associating 
functional primitives (functional roles and relations) to 
behavioral ones (constitutive and structural equations). 
This is done in such a way that an appropriate functional 
role is associated, in the behavioral model, to each con- 
stitutive equation which is a specialization of a general- 
ized equation in the TOS, and, analogously, a relation 
(i.e., a mutual dependency or an influence) is associated 
to each structural equation. Since behavior is related to 
structure (see Section 111-B), the association between 
functional roles and physical equations results in an in- 
direct assignment of functional roles to structural com- 
ponents. Therefore, the association between functional 
roles and components can be of two types: 

1) One to one, when a component is bound to a single 
functional role in a single view and operating mode; 
this is the case, for example, of a pipe viewed as a 
conduit in the hydraulic view; 

2) many to one, when one of the following three cases 
occurs: 
a) a component is bound to several coexisting func- 

tional roles in the same view and operating mode; 
as an example, consider an oscillating pendu- 
lum: it is at the same time an inductor and a ca- 
pacitor in the mechanical view, since, at any 
time, it is either charging with potential energy 
and discharging kinetic energy, or vice versa; 

b) a component is bound to several coexisting func- 
tional roles in different views but in the same op- 
erating mode; as an example, consider a wire: it 
is at the same time a conduit in the electrical view 
and an f-generator in the thermal one; 

c) a component is bound to several coexisting roles 
in the same view but in different operating 
modes; as an example, consider a valve repre- 
sented in the hydraulic view by two operating 
modes (open and closed): in the open mode it is 
a conduit, in the closed mode it is a barrier. 

Note that a component may dynamically change its 
functional role in a given view depending on the values 
of physical variables which determine its operating mode. 
Thus, in the electrical view, a fuse is a conduit until the 
current flowing through it is below a specified threshold; 
afterwards, it becomes a barrier. 

Considering again the example of the temperature 
gauge, Fig. 5 shows a functional role model represented 
in terms of a functional role network: FUN.R- 1.1. This 
model is based on the same set of representational as- 
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Fig. 5 .  Functional role model of the temperature gauge 

sumptions adopted for BEH- 1.1, and describes the device 
at the same aggregation level. The model can be better 
understood if one takes into account the epistemological 
links that indirectly relate function to structure through 
behavior. By considering these links, note that some com- 
ponent is bound to more than one role in different views: 
the thermistor TH, for example, results to be a reservoir 
(of heat) in the thermal view (R2) and a conduit (of elec- 
trical current) in the electrical view (C2). Between these 
two roles an influence relation holds: the amount of heat 
stored in the reservoir influences (negatively) the resis- 
tance of the thermistor viewed as a conduit of electricity. 
Other components have alternative roles associated with 
them due to the existence of different operating modes in 
the same view: the switch SW, for example, in the elec- 
trical view, is a conduit (C6) when it works in the mode 
“CLOSED” (i.e., OM-2) and a barrier (Bl) when it 
works in the mode “OPEN” (i.e., OM-1). Roles G3, C8, 
G4, and C7 in Fig. 5 are not associated with any com- 
ponent of the temperature gauge but have been introduced 
to describe explicitly the application of external genera- 
tors at the boundaries of the system: G3 is a generator of 
torque acting on the switch SW through conduit C8, and 
G4 is a generator of heat driving the thermistor TH 
through C 7 .  Fig. 5 also shows the epistemological links 
between FUN.R-1.1 and BEH-1.1. For example, the 
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functional role C1 in the electrical view is associated to 
the physical equation V3 - V4 = R1 * I3 (Ohm's law 
applied to the wire WR) in the same view, the direct mu- 
tual dependency between functional roles C6 and C1 in 
the electrical view is associated to the structural equations 
I5 + I6 = 0 (same current through wire WR and switch 
SW) and V5 = V6 (same voltage in the node between 
wire WR and switch SW), in the same view. 

E. Processes and Phenomena 
Functional roles participate in physical processes. Let 

us introduce first of all the concept of process. A process 
is a four-tuple (cofunction, precondition, effect, postef- 
fect), where: 

Cofunction is a functional role network which speci- 
fies which functional roles are necessary and how 
they must be related together in order to enable the 
occurrence of the process; 
precondition is a logical predicate which character- 
izes the situation which enables the process to occur; 
effect is a logical predicate which characterizes the 
situation which is true during the occurrence of the 
process; 
posteffect is a logical predicate which characterizes 
the situation which is true after the process has 
ended, Le., when its precondition ceases to hold. 

Note that preconditions, effect, and posteffect may in- 
volve values of physical variables which are instances of 
generalized variables associated to the functional roles of 
the cofunction. 

Of course, not every functional role network can be the 
cofunction of a process. For example, a series of conduits 
linked together by mutual dependencies, although consti- 
tuting a functional role network, does not support any 
process at all. To be a cofunction a functional role net- 
work must include at least a generator and provide a path 
through which a generalized substance can flow. More- 
over, a cofunction must be thought of as the representa- 
tive of an equivalence class including all equivalent func- 
tional role networks (;.e., functional role networks which 
are indistinguishable from a functional point of view). 

For the class of systems whose behavioral model can 
be interpreted in terms of the TOS, a finite set of three 
possible processes can be identified. These are described 
below. Note that in the definition of the process the sym- 
bol {. . .}  denotes an option, the symbol [. . .] an alter- 
native, val(PV, GV, FR) denotes the value of the physical 
variable PV which is an instance of the generalized vari- 
able GV of the functional role FR, m-dependent (FRI, 
FR2) denotes that the functional roles FR1 and FR2 are 
mutually dependent, and der(PV, GV, FR) denotes the 
sign of the time derivative of PV. Note also that we refer, 
in general, to minimal cofunctions, i.e., functional role 
networks which are the cofunction of a process and are 
composed by the strictly necessary number of functional 
roles. 

transporting (TRANS) 
cofunction (Gl[".'], CLfXe1 , {G2[es'1}) 

m-dependent(G 1 'I, C[', 'I) 
{m-dependent(C['."I, G2'e9'fl)} 

precondition val(PVl, [e, f], G1) > 0 
{AND val(PV,, [e, f], G1) > val(PV2, 

val(PV3, [f, e], C )  > 0 
val(PV,, [f, e], C) = 0 AND 
val(PV,, [e, f], G1) = 0 
{OR val(PV,, [e, f ] ,  G1) = val(PV2, 

[e, f l ,  G2)} 
effect 
posteffect 

[e, f l ,  (32)) 

Transporting involves one or two generators, either Ge 
or G' depending on the generalized substance involved, 
and a conduit, C' or C", respectively. The functional roles 
are linked together by mutual dependency relations. Its 
precondition is that the generator pushes the generalized 
substance, or, in the case of two generators, that one 
pushes and the other pulls, i.e., there must be a difference 
between the values of the physical variables of type effort 
(or flow) associated to the generators. The resulting effect 
is a current flowing through the conduit. The posteffect is 
that the current becomes zero and the generator does not 
push anymore, or, in the case of two generators, that one 
does not push and the other does not pull anymore, ;.e., 
the difference between the values of the physical variables 
associated to the generators becomes zero. 

reservoir charging (RESC) 
cofunction (Gfe, f l  Cff? "1 R"& PI) 

3 

m-dependent(G["* I ,  C'""]) 
m-dependent(C"* "I, R[q*pl) 

precondition val(PV,, [e, f], G) > val(PV2, [e, f], R) 
effect val(PV,, [f, e], C )  > 0 

AND der(PV4, [q, PI, R) > 0 
posteffect val(PV,, [e, f ] ,  G) = val(PV2, [e, f], R) 

AND val(PV,, [f, e], C )  = 0 
AND val(PV4, [q, PI, R) > 0 

Reservoir charging involves a generator, either Ge or 
Gf depending on the generalized substance involved, a 
conduit, either C' or C", respectively, and a reservoir, 
either Rq or RP, respectively. The functional roles are 
linked together by mutual dependency relations. Its pre- 
condition is that there must be a difference between the 
values of the physical variables of type effort (or flow) 
associated to the generator and to the reservoir. The re- 
sulting effect is a current flowing through the conduit and 
an increasing amount of substance in the reservoir. The 
posteffect is that the difference between the values of the 
physical variables associated to the generator and to the 
reservoir and the current flowing through the conduit be- 
come zero, and the amount of substance within R has a 
value which is greater than zero. 

' 
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reservoir discharging (RESD) 
cofunction (REq9 CLf3 { GLe3 'I}) 

m-dependent(RLq, CEf9 'I) 
{m-dependent(C'f9e1, GIe9 'I)} 

precondition val(PV1, [q, p], R) > 0 
{AND val(PV,, [e, f], R) > val(PV,, 

val(PV4, [f, e], C )  > 0 
AND der(PVl, [q, PI, R) < 0 
val(PV4, [f, e], C) = 0 AND 
(vaWVl,  [q, PI, R) = 0 

[e, f l y  
effect 

posteffect 

{OR vaI(PV1, [q, PI, R) 2 0)) 
{AND val(PV,, [e, f], G) = val(PV,, 

[e, f l ,  R)) 

Reservoir discharging involves a reservoir, either Rq or 
RP depending on the generalized substance involved, a 
conduit, either Cf or C" respectively, and a possible gen- 
erator, either Ge or G' respectively. The functional roles 
are linked together by mutual dependency relations. Its 
precondition is that the reservoir is initially not empty, 
and, in the case of presence of a generator, that there is a 
difference between the values of the two physical vari- 
ables of type effort (or flow) associated to the reservoir 
and to the generator, respectively. The resulting effect is 
a current flowing through the conduit and a decreasing 
amount of substance in the reservoir. The posteffect is 
that the substance in the reservoir and the current flowing 
through the conduit becomes zero or, if a generator is 
present, that the difference between the values of the two 
physical variables associated to the reservoir and to the 
generator is zero. 

Processes have an associated functional state which 
may assume one of the following two values: active, not 
active. We say that a process is active if its cofunction is 
present in some view and its precondition is satisfied. The 
process is deactivated when either its cofunction is no 
more present or its precondition is no more satisfied. 

Three types of relation between processes can be iden- 
tified. These are defined below: 

Direct causation: a process Pi directly causes a pro- 
cess Pj if the effect or posteffect of Pi entails the pre- 
condition of Pj. For example, water pumping (res- 
ervoir charging) causes water transportation 
(transporting), since the effect of pumping is to cre- 
ate a pressure drop, which is the precondition for 
water transportation. 
Regulation: a process Pi regulates a process Pj if 
there exists an influence relation between two func- 
tional roles belonging to their cofunctions which in- 
volves a parameter which is a generalized resistance. 
For example, the process of turning a tap on a water 
conduit changes its section and thus modifies the rate 
of the process of water transportation. 
Support: a process Pi supports a process Pj if there 
exists an influence relation between two functional 
roles belonging to their cofunctions which involves 

a generalized substance on one side and a parameter 
which is a generalized capacitance or a generalized 
inductance, according to the type of substance con- 
sidered, on the other side. Consider, for example, 
two hydraulic tanks A and B connected through a 
pipe. Suppose that tank A is filled with hot water 
while B is empty. Two processes coexist process-1 
is a discharging capacitor process in the hydraulic 
view (water flows from tank A to B), process-2 is a 
discharging capacitor process in the thermal view 
(heat flows from A to B). We can now say that pro- 
cess- 1 supports process-2 because of the influence 
relation holding between water and heat: the capac- 
ity of the water considered as a reservoir of heat is 
influenced by the volume of water present in the tank. 

Processes can be connected together using the above 
relations to yield a graph, called process network. By 
functional state of a process network we mean the speci- 
fication of which processes of the network are active and 
which are not active at a given time instant. 

Processes participate in the definition of physical phe- 
nomena. A phenomenon is a four tuple (organization, 
precondition, effect, posteffect), where: 

organization is a process network which defines 
which processes are necessary and how they must be 
related together in order to enable the occurrence of 
the phenomenon; 
precondition is a logical predicate which character- 
izes the situation which enables the phenomenon to 
occur; the precondition involves the functional state 
of the processes specified in the organization of the 
phenomenon; 
effecr is a logical predicate that characterizes the sit- 
uation which is true during the occurrence of the 
phenomenon; 
posteffect is a logical predicate which characterizes 
the situation which is true after the phenomenon is 
terminated, i.e., when its precondition ceases to 
hold. 

Note that effect and posteffect may involve values of 
physical variables which are instances of generalized vari- 
ables associated to the functional roles belonging to the 
cofunction of processes specified in the organization of 
the phenomenon. Phenomena whose organization is con- 
stituted by a single process are called elementary phenom- 
ena. 

The set of possible phenomena is open ended. Several 
types of commonly occurring phenomena can be easily 
identified, such as natural oscillation, damped oscillation, 
homeostasis, dynamic equilibrium, etc. As an example of 
a phenomenon, we illustrate below the phenomenon of 
damped oscillation. Note that in the definition the symbol 
d-causes(P1, P2) denotes that the process PI directly 
causes the process P2, while state(P) denotes the func- 
tional state of the process P. 
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damped oscillation (DMPOSC) 
organization: (RESDlq, RESCIP, RESD2P, 

RESC2q) 
d-~auses(RESC2~,  RESDlq) AND 
d-causes(RESDlq, RESClP) AND 
d-causes(RESCIP, RESD2P) AND 
d-~auses(RESD2~,  RESC2q) 

~tate(RESC2~) = active] 

# 01 AND 

precondition [state(RESCIP) = active, 

effect [der(PVI, p, R J  + 0, der(PV2, q, R2) 

der(PV1, p, RI)  + der(PV2, q, R d  < 0 
val(PVI, p, R,) = val(PV2, q, R2) posteffect 

= o  
The organization of a damped oscillation comprises four 

processes: a reservoir discharging process of displace- 
ment q (RESDlq), a reservoir discharging process of im- 
pulse p (RESD2P), a reservoir charging process of im- 
pulse p (RESCIP), and a reservoir charging process of 
displacement q (RESC2'!). The processes are linked to- 
gether by four relationships of direct causation: RESC2q 
directly causes RESDlq, RESD I q  directly causes 
RESCIP, RESD2P directly causes RESC2q, and RESC l P  
directly causes RESD2". The precondition of the phenom- 
enon is that either RESCIP or RESC2q are in the active 
state. The effect is a change in the amount of substance p 
within reservoir R1 belonging to the cofunction of 
RESCIP and RESDZP or a change in the amount of sub- 
stance q within reservoir R2 belonging to the cofunction 
of RESCZ" and RESD lq and a decreasing of the total me- 
chanical energy associated to the system (i.e.,  the sum of 
the amounts of displacement and impulse associated re- 
spectively to reservoirs R2 and R l ) .  The posteffect is that 
the system will be at rest with no kinetic energy. 

When the above phenomenon is specialized, for ex- 
ample, in the mechanical domain, it can be used to rep- 
resent the oscillation of a spring-mass system. In this 
case, the four processes constituting the organization of 
the damped oscillation are the processes of charging and 
discharging of position and velocity, respectively. Anal- 
ogously, when it is specialized in the electrical domain, 
it can be used to describe the four processes of charging 
and discharging of electrical charge and magnetic flux in 
a RCL circuit. 

Finally, two phenomena P and Q are related if they 
share a process in their organization or if two processes 
belonging to their respective organizations are related 
through direct causation, regulation or support. Phenom- 
ena can be connected together using the above relations 
to yield a graph, called phenomenon network. 

Phenomena can be directly associated to the intended 
goals of the designer that are represented in the teleolog- 
ical model, thus completing the link between behavior and 
teleology. 

F. The Process Model 
The process model of a system describes the set of pro- 

cesses that may occur in the system and their relation- 

ships. It is represented by a process network. Of course, 
since processes are generalized entities, they have to be 
specialized in the appropriate physical domains when they 
are used to represent a specific system. 

The process model is directly related to the functional 
role model through an ontological link. This link, which 
relates a model which is based on the object-centered on- 
tology to a model which is based on a hybrid ontology, is 
represented by specifying which functional roles and re- 
lations constitute the cofunction of the processes of the 
process model. Of course, since the functional role model 
is indirectly associated to the structural model through the 
behavioral model, the association between processes and 
functional role networks results in an indirect assignment 
of processes to structural components. 

Considering again the example of the temperature 
gauge, Fig. 6 shows a functional representation of the de- 
vice using a process network (FUN.P-l. l) which includes 
several processes and their relationships. By traversing the 
ontological links described in Fig. 6 (towards the func- 
tional role model) and then the epistemological links 
specified in Figs. 5 and 3 ,  it is possible to identify the 
structural components which participate to processes de- 
scribed in FUN.P-l. l .  More specifically, for example, 
the battery BT, the switch SW (operating in the CLOSED 
mode), the wire WR and the thermistor TH fulfill the co- 
function of a transporting process (TRANSI) in the elec- 
trical view. In the thermal view, the wire WR, the air 
surrounding the wire AR, and the bimetallic strip BS ac- 
complish the cofunction of a reservoir charging process 
of heat from the wire to the bimetallic strip (RESCI). The 
influence relation existing between the functional role C 1 
in the electrical view and G2 in the thermal view, both 
associated to the wire WR, is represented by a causal re- 
lationship between the TRANS 1 and RESC I processes. 
Note that Fig. 6 also describes exogenous processes which 
occur when the operator acts on the switch SW or an ex- 
ternal generator of heat is connected to the thermistor TH. 
These processes are represented by reservoir charging 
processes (RESC3, RESC4) which are related to the elec- 
trical transporting process by a regulation relation. 

G. The Phenomenon Model 
The last model considered in the functional represen- 

tation of a system is the phenomenon model. This model 
represents the set of phenomena which may occur in the 
system. It is represented by a phenomenon network. Of 
course, since also phenomena are generalized entities, 
they have to be specialized in the appropriate physical do- 
mains when they are used to represent a specific system. 

The phenomenon model is directly related to the pro- 
cess model through an ontological link. This link, which 
relates a model based on the system centered ontology to 
a model based on a hybrid ontology, is represented by 
specifying which processes and relations constitute the or- 
ganization of each phenomena of the phenomenon model. 
Of course, since the process model is indirectly associated 
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Fig. 6 .  Process model of the temperature gauge. 

to the structural model through the functional role model 
and the behavioral model, the association between phe- 
nomena and process networks results in an indirect as- 
signment of phenomena to structural components. 

Fig. 7 shows a partial phenomenon model, representing 
the temperature gauge without considering heat dissipa- 
tion. The model represents four phenomena: PH1, PH2, 
PH3, and PH4 which can be better understood if one con- 
siders the ontological link that relates the phenomenon 
model to the process model and the link existing between 
this last model and the structural model through the func- 
tional role model and the behavioral model. PH1 de- 
scribes the functioning of the switch in the electrical cir- 
cuit while PH2 describes the functioning of the 
thermoelectrical coupling between the wire and the bi- 
metallic strip. PH3 describes the functioning of the ther- 
mistor in the electrical circuit and PH4 describes the func- 
tioning of the thermomechanical coupling between the 
bimetallic strip and the pointer. The phenomenon model 
also specifies how the phenomena are related to each 
other: phenomena PH2 and PH4, for example, are related 
through process RESC 1 ,  which belongs to their organi- 
zations. Finally, Fig. 7 shows the ontological link exist- 
ing between the phenomenon model and the process 
model. 

H. Using Functional Knowledge 

tional knowledge. These are briefly illustrated below. 
Three basic reasoning utilities are available for func- 

Functional prediction derives the future functional 
state of a process network, given its actual state and 

FUN.PH- 1.1 
APPROXIMATION : A I 

e elccmmcchanical view 0 phenomenon 0 ihcmmcchanical view - related phenomena 

Fig. 7 .  Phenomenon model of the temperature gauge 
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a perturbation in the state of some of its constituent 
processes. 
Functional dependency analysis identifies, within a 
given process network, all the sets of processes 
whose functional state may influence a given pro- 
cess. 
Process detection identifies all the potential pro- 
cesses that may occur inside a system given a rep- 
resentation of the system in terms of a functional role 
network. 

I .  Comparison with Related Work 
Considering the concept of function as a mapping be- 

tween behavior and teleology, we have taken as a starting 
point of our approach the proposals presented in [2] and 
[9]. However, these proposals are both very synthetically 
stated, and the problem of how this mapping can be con- 
cretely represented is not faced at all. 

Similar to [67], we propose to describe function at var- 
ious levels of abstraction. However, unlike the work de- 
scribed in [67] which does not propose any modeling lan- 
guage, we introduce specific primitives to model each 
aspect of functional knowledge together with the ontolog- 
ical links between the various representations. 

The set of functional roles defined in Section V-C is 
partially inspired to the primitive functions proposed in 
[7], [31], [56]. The main difference is that in our pro- 
posal, functional roles are derived from the generalized 
equations described in the TOS, while in the above men- 
tioned approaches functional primitives are derived only 
intuitively, and are specific to the particular physical do- 
main considered. 

The concept of process defined in Section V-D, is par- 
tially related to [32]. However, our concept of processes 
is more general. Moreover, in our approach the concept 
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of cofunction is explicit and can be used not only to es- 
tablish the presence of a potential process in a system in 
analytic tasks, but also to suggest a possible functional 
configuration able to achieve a primitive goal in synthetic 
tasks. Finally, in our approach, processes are used to de- 
fine phenomena which represent a further level of inter- 
pretation of behavior which is not explicitly represented 
in [32]. 

The method used for process detection was originally 
inspired to the parsing mechanism used in [24] for the 
teleological analysis of a system. It also shares some sim- 
ilarities with consolidation [7], [8]. 

Finally, our approach to functional modeling is also 
partially related to the work on bond graphs [70J devel- 
oped in the field of system dynamics. However, our goals 
are very different. Our aim is to explicitly represent the 
link existing between behavior and teleology in the frame 
of multimodeling, where models are assumed to be sep- 
arate. Therefore, we only focus on functional aspects. Be- 
havioral and structural aspects, which are mixed with the 
functional ones in bond graph theory, are separately rep- 
resented in our proposal in the behavioral and structural 
models respectively. 

VI. REPRESENTATION AND USE OF TELEOLOGICAL 
KNOWLEDGE 

A. R e  Concept of Teleology 
In the multimodeling approach the teleology of a sys- 

tem is defined as the specification of the goals assigned to 
it by the designer [13]. System goals are assumed to be 
achieved through phenomena. However, while all arti- 
facts achieve their goals by performing some kind of 
physical phenomenon, for example, transporting electri- 
cal signals, transducing power, etc., not all goals can be 
directly associated to physical phenomena. In fact, goals 
are often at the information level, i.e., they concern the 
acquisition, processing, and distribution of information, 
independently of the underlying physical phenomena. 
Therefore, two kinds of goals can be identified: 

physical goals, which describe system purposes in terms 
of physical phenomena; 
information goals, which define system purposes in 
terms of information processing. 

Of course, these two kinds of goals are not independent. 
In fact, the information level can be viewed as the result 
of an interpretation performed upon an underlying phys- 
ical level: thus, information goals always refer to appro- 
priate physical goals which constitute their background. 
In this paper, we focus only on physical goals, disregard- 
ing their possible higher level interpretation in terms of 
information processing. 

B. The Concept of Goal 
The fundamental concept in the teleological model is 

sider, for example, a ram, a pump, and a single phase 
alternator; all these devices may be considered as power 
transducers since they convert power from one physical 
domain to another. However, the ram specifically con- 
verts power from the hydraulic to the mechanical domain, 
the alternator from the electrical to the mechanical do- 
main, etc. “To transduce power from one physical do- 
main to another” is, thus, the generic purpose, i.e., the 
common goal of these devices. 

A goal is a triple (goal pattern, conditions, intended 
behavior), where: 

Goal pattern assigns a name to the goal and specifies 
its arguments, which are typed variables relevant to 
the definition of the goal; 
Operational conditions specify the necessary opera- 
tional conditions for the achievement of the goal; 
they include: 

Inputs, which specify what should be provided as 
input to the system in order to enable it to achieve 
its intended goal. Inputs are expressed in terms of 
admissible ranges of values for exogenous vari- 
ables and possibly their derivatives, i.e., system 
variables whose values can be set by the user or 
are determined by the environment where the sys- 
tem operates; 
Settings, which specify how system parameters 
have to be adjusted in order to enable it to achieve 
its intended goal. Settings include the specification 
both of operating modes and of the appropriate ref 
erence values for parameters. Settings can be ex- 
pressed using logical operators and temporal rela- 
tions [4]; 

Intended behavior specifies the behavioral effects that 

Outputs, which specify the system variables rele- 
vant to the definition of the goal and their admis- 
sible values; 
Transformation, which specifies the relationships 
expected to hold among the values of output and 
operational conditions when the goal is achieved. 

Goals are generalized entities. Therefore, they have to 
be specialized in the appropriate physical domains when 
they are used to represent a specific system. A goal is 
specialized when: 

Generalized variables, parameters, and components 
in the intended behavior and operational conditions 
of the goal are replaced by physical variables, pa- 
rameters and actual components of the behavioral and 
structural model of a given physical system; 
The values (or admissible ranges of values) of vari- 
ables and parameters are specified; 
The transformation between variables and parame- 
ters is explicitly stated. 

are expected from the goal; it includes: 

Our approach to teleological modeling is based on the 
system centered ontology. It considers a system as an or- 

that of goal. A goal represents a generic purpose. Con- ganized unit characterized only by parameters, input vari- 
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ables, and output variables. The model specifies what is 
expected from the system in terms of goal pattern, inputs 
and settings necessary to achieve the goal and the in- 
tended output behavior. Therefore, our perspective is that 
teleology embodies a specification of possible behaviors, 
not the description of a single behavior. In other words, 
there may exist several alternative behaviors that satisfy 
a given teleology. 

C. Primitive Goals 
Primitive goals are goals whose intended behavior can 

be directly accomplished by elementary phenomena. In 
general, the correspondence between primitive goals and 
elementary phenomena is many ro one. This means that 
more than a single primitive goal may correspond to the 
same elementary phenomenon, according to which vari- 
ables and parameters in the phenomenon definition are 
considered as inputs and outputs in the specification of the 
purpose. Examples of primitive goals are: 

1) TO-TRANSFER x: generalized current FROM y: 
component TO z: component. 
The generic purpose of this goal is to move a gen- 
eralized current from a point to another of a system. 
Specific examples of this goal are “TO-TRANS- 
FER angular velocity FROM main wheel TO es- 
cape wheel” associated to the wheel train of a 
watch. “TO-TRANSFER electrical current FROM 
battery TO light bulb” associated to an electrical 
circuit, etc. This goal can be achieved by an ele- 
mentary phenomenon whose organization is consti- 
tuted by a transporting process. 

2) TO-ACCUMULATE x: generalized substance {IN- 
SIDE y: component). 
The generic purpose of this goal is to increase the 
amount of a generalized substance, possibly speci- 
fying the component of the system where the accu- 
mulation takes place. Specific examples of this goal 
are “TO-ACCUMULATE heat INSIDE water” as- 
sociated to a boiler, “TO-ACCUMULATE angular 
momentum INSIDE flywheel” associated to a me- 
chanical device, etc. This goal can be achieved by 
an elementary phenomenon whose organization is 
constituted by a reservoir charging process. 

3) TO-SENSE-RATE-OF x: generalized current 
CHANGE. 
The generic purpose of this goal is to sense the rate 
of a generalized current change in a system. 
Specific examples of this goal are “TO-SENSE- 
RATE-OF pressure CHANGE” associated to a 
pressure gauge, “TO-SENSE-RATE-OF velocity 
CHANGE” associated to an accelerometer, etc. 
This goal can be achieved by an elementary phe- 
nomenon whose organization is constituted by a res- 
ervoir charging process. 

The epistemological link between primitive goals and 
elementary phenomena is represented by a mapping be- 
tween the arguments of the primitive goal and the gener- 

alized variables associated to the functional roles belong- 
ing to the cofunction of the single process which 
constitutes the organization of the elementary phenome- 
non that realizes that goal. 

Note that primitive goals should not be confused with 
a simple relabeling of the elementary phenomena. In fact, 
goals and elementary phenomena encode different knowl- 
edge: a goal describes, in very general terms, what is ex- 
pected from the system without making any commitment 
on how it can be achieved. On the contrary the elementary 
phenomenon associated to the goal describes how these 
expectations can be realized in terms of which process and 
preconditions must be provided. 

D. Nonprimitive Goals 
Goals which are not primitive represent purposes that 

can be achieved by nonelementary phenomena. Several 
different nonprimitive goals may correspond to a single 
phenomenon and, of course, the set of nonprimitive goals 
is open ended. Examples of nonprimitive goals are: 

1) TO-TRANSDUCE x: generalized variable INTO y: 
generalized variable. 
The generic purpose of this goal is to convert a gen- 
eralized current or substance from a physical do- 
main to another. Specific examples of this goal are 
“TO-TRANSDUCE force INTO pressure” associ- 
ated to a hydraulic ram, “TO-TRANSDUCE elec- 
trical current INTO torque” associated to an asyn- 
chronous motor, etc. This goal can be achieved, for 
example, in the asynchronous motor by a phenom- 
enon whose organization is composed of two cou- 
pled storage processes (Le., two reservoir charging 
processes) of magnetic energy influencing a me- 
chanical generator. 

2) TO-CONTROL x: generalized current BY y: gen- 
eralized substance. 
The generic purpose associated to this goal is to reg- 
ulate a generalized current flowing out of a system, 
proportionally to the amount of a generalized sub- 
stance accumulated inside the system. Specific ex- 
amples of this goal are “TO-CONTROL electrical 
current BY position” associated to an electrical 
switch, “TO-CONTROL water flow BY angular 
displacement” associated to the tap of a faucet, etc. 
This goal can be achieved, for example, by a phe- 
nomenon whose organization is composed by a res- 
ervoir charging process that regulates a transporting 
process. 

3) TO-KEEP x: generalized current OF y: component 
AT z: reference value. 
The generic purpose associated to this goal is to 
maintain a specific partial state in time, described 
in terms of the values which some relevant physical 
variable describing the purpose of the system must 
hold. Specific examples of this goal are “TO-KEEP 
temperature OF room AT 18C”” associated to a 
thermostat controlled home heating system, “TO- 
KEEP angular velocity OF platter AT 45 RPM” as- 
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sociated to the control system of a turntable etc. This 
goal can be achieved by a phenomenon whose or- 
ganization is represented by a complex network of 
interrelated processes constituting a feedback loop. 
The organization must comprehend a set of feedfor- 
ward processes having a positive gain through the 
feedback loop (i.e.,  aimed at increasing the rate of 
flow of some substance) and a set of feedback pro- 
cesses having a negative gain through the loop (i.e., 
aimed at decreasing the same rate of flow, for ex- 
ample, through a regulation). 

Goals can be obtained by composing together primitive 
and nonprimitive goals. Therefore, a goal may be de- 
scribed through its teleological decomposition, i.e.,  by 
explicitly specifying the primitive and nonprimitive goals 
upon which it is based and the ways they are intercon- 
nected. A subgoal relationship relates a goal to its con- 
stituent subgoals. Generally, a goal may be decomposed 
in several different ways, i.e. there exist alternative de- 
compositions of the goal into constituent subgoals. There- 
fore, the definition of a goal can easily be visualized 
through an AND/OR tree, where OR nodes represent al- 
ternative decompositions of a parent goal and AND nodes 
represent subgoals which are all needed to achieve the 
parent goal. Moreover, subgoals of a given goal may be 
constrained by mutual temporal dependencies which can 
be described through an appropriate set of temporal rela- 
tions inspired by [4]. 

The epistemological link between goals and phenom- 
ena is analogous to that illustrated in Section VI-C be- 
tween primitive goals and elementary phenomena. Since 
there may exist alternative decompositions of a single goal 
into subgoals, the correspondence between goals and phe- 
nomena is, in general, many to many. In other words, the 
same phenomenon can be used to achieve different goals, 
while a single goal might be potentially achieved by dif- 
ferent phenomena. Fig. 8 describes in generalized terms 
(i.e., without referring to a specific system) the episte- 
mological links existing between the primitive goals TO- 
ACCUMULATE INSIDE and TO-TRANSFER, which 
constitute the leaves of the decomposition of the goal TO- 
CONTROL, and two elementary phenomena PH-1.1 and 
PH-1.2 that accomplish the goals. The organization of the 
two elementary phenomena is represented by a reservoir 
charging process and a transporting process, respectively. 
The figure illustrates how the arguments of the primitive 
goals are mapped into the generalized variables associated 
with the functional roles belonging to the cofunction of 
the processes constituting the organization of the two phe- 
nomena. 

E. The Teleological Model 
The teleological model of a system describes the pur- 

pose of the system by specifying the goals associated with 
it and their relationships. Each goal is represented in terms 
of goal pattern, operational conditions, and intended out- 
put behavior. Consider, for example, the temperature 
gauge. The purpose of the gauge, at the information level, 

is that of measuring temperature. At the physical level, 
the purpose is achieved by a transduction phenomenon 
which converts temperature deviations into the angular 
displacement of a pointer on a scale. Therefore, the 
purpose can be described by the goal pattern “TO- 
TRANSDUCE temperature INTO angular displacement” 
which is an instance of the generalized pattern “TO- 
TRANSDUCE x: generalized current INTO Y: general- 
ized substance” where the two arguments x and y have 
been specialized in the thermal and mechanical (rota- 
tional) domains, respectively. The operational conditions 
specify that the temperature gauge should be fed with an 
electrical voltage having a well specified value and fre- 
quency (for example, a voltage of 12 V DC) and should 
be used only to measure temperatures whose values lie 
within a specific range (for example, T within [ -20, +50] 
“C). Moreover, to enable the device to achieve its goal, 
the operating mode “CLOSED” for the switch of the 
temperature gauge should be selected. In this simple ex- 
ample, the selection of reference values is not necessary. 
The intended behavior associated with the temperature 
gauge specifies the transformation between the input and 
the output. The output variable is represented by the an- 
gular displacement 4 of the pointer with reference to a 
given starting point. The value of 4 is constrained to re- 
main within a given range and is related to temperature 
deviations by a linear relationship, i.e., 4 = KAT where 
K (rad/C”) represents the gauge sensitivity. Of course, 
many other relationships and constraints may be used, and 
are actually provided, in order to specify the intended be- 
havior of the system such as its linearity, stability, and 
response time. 

Fig. 9 shows three teleological models of the temper- 
ature gauge: TEL-0, TEL-1, and TEL-2. Each model de- 
scribes a specific level of the decomposition of a goal into 
subgoals. Aggregation links between teleological models 
at different aggregation levels are represented by subgoal 
relationships which relate goals in a model with the cor- 
responding goals in a finer or coarser grained one. Model 
TEL-0 represents the goal G-0.1 (i.e., TO-TRANSDUCE 
temperature INTO angular displacement) associated by 
the designer to the temperature gauge. Model TEL-1 rep- 
resents a finer aggregation level in which the goals asso- 
ciated to the gauge are G-1.1 (i.e., TO-CONTROL cur- 
rent BY heat), and G-1.2 (Le., TO-TRANSDUCE current 
INTO angular displacement). Model TEL-2 represents a 
further refinement in which the teleology associated to the 
temperature gauge is described through four goals: the 
primitive goals G-2.1 (Le., TO-TRANSFER current 
FROM BT TO WR) and G-2.2 (i.e., TO-ACCUMU- 
LATE heat INSIDE TH), and the nonprimitive goals 
G-2.3 (i.e., TO-TRANSDUCE current INTO heat) and 
G-2.4 (i.e., TO-TRANSDUCE temperature INTO angu- 
lar displacement). The figure also shows the temporal de- 
pendencies which are held between the goals represented 
in each model. In general, the teleological decomposition 
of the system goals into subgoals and the structural de- 
composition of the same system into components and sub- 
components leads to two hierarchies that may be quite dif- 
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Fig. 8. TO-CONTROL: epistemological links between goals and phenom. 
ena. 

ferent, especially in those devices exhibiting a great deal 
of function sharing [78]. 

The epistemological link between the teleological 
model and the phenomenon model is represented by as- 
sociating goals (primitive and nonprimitive) to phenom- 
ena (elementary and not elementary, respectively). For 
example, the nonprimitive goal G-2.4, represented in the 
TEL-2 model, is associated with the phenomenon PH4 
represented in the FUN.PH-1.1 model. The primitive 
goals G-2.1 and G-2.2 in the TEL-2 model are associated 
with two elementary phenomena (not explicitly repre- 
sented in the phenomenon model) whose organizations are 
represented by a transporting process of electricity (i.e., 
the process TRANS1 shown in Fig. 6 )  and a reservoir 
charging process of heat (i.e., the process RESC4 also 
shown in Fig. 6) ,  respectively. Note that there are some 
elementary phenomena which do not correspond to any 
goal. For example, the two elementary phenomena whose 
organizations are represented by the transporting process 
of heat from the wire to the air (TRANS2) and the reser- 
voir discharging process of heat from the strip to the air 

(RESD 1) respectively, have no goals associated with them 
in the teleological model. Since they actually represent 
side effects of other phenomena, they cannot be ascribed 
to any real designer’s intention. 

F. Using Teleological Knowledge 

ical knowledge. These are briefly illustrated below. 
Two basic reasoning utilities are available for teleolog- 

Interpretation of actual use identifies which goals of 
the teleological model should be achieved as a result 
of user actions. It takes in input current inputs and 
settings, and provides in output a list of possible op- 
erator’s goals. 
Dejinition of proper use infers the actions the user 
should perform to achieve a desired goal. It takes in 
input a list of operator’s goals, and provides in out- 
put the specification of system inputs and settings re- 
quired to achieve them. “Definition of proper use” 
fails when it leads to contradictory actions or con- 
tains inconsistent temporal information; then, a jus- 
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tification of the failure is provided to show which 
goals are inconsistent or unachievable and why. 

G. Comparison with Related Work 
The concept of goal is partially inspired by [47], how- 

ever our approach to teleological modeling is more gen- 
eral. Goals identify generic purposes in a way that ab- 
stracts from physical domains; goals are structured entities 
per se, characterized by operational conditions and in- 
tended behavior; they may be composed together to yield 
more complex goals or decomposed until their primitive 
components are obtained. 

In [ 101 a teleological model is proposed which is some- 
how similar to our approach. In particular, the character- 
ization of a goal, in terms of the behavior which is ex- 
pected when the system is in some specified state, is quite 
close to our distinction between the intended behavior as- 
sociated to a goal and its operational conditions. How- 
ever, our specification of such conditions is more articu- 
lated and includes aspects of temporal sequencing of 
settings that have been ignored in [lo]. Furthermore, in 
our approach goals are generalized entities which are as- 

sociated to phenomena in the phenomenon model. So, 
given a goal, the epistemological link with functional 
knowledge allows us to retrieve the possible functional 
organizations that enable the achievement of the goal. In 
this way, we explicitly represent the intuitive notion of 
“general engineering template” which is used in [ lo]  to 
denote “a general arrangement of devices that is well 
understood” and can be used to attain a purpose. 

The teleological language proposed in [33] is used to 
represent the relation existing between design modifica- 
tions (for example, the addition of a component of an in- 
itial structure or the modification of a specific behavioral 
parameter) and the effects that these changes produce in 
terms of behaviors which are prevented, guaranteed or in- 
troduced in a system. This perspective is different from 
ours, because in our approach purposes are associated to 
systems as a whole and not to design modifications. 

VII. DIAGNOSIS BASED ON MULTIMODELING: 
A CASE STUDY 

A .  Model-Based Diagnosis 

stated as follows [23], [26], [68]. Given: 
The basic paradigm of model-based diagnosis can be 

A model of a system, including a description of the 
structure of the system and of the expected (normal) 
behavior of each component, 
A set of observations about actual system behavior, 
obtained through direct inspection or measurement, 
and 
A set of symptoms, i.e., discrepancies between ac- 
tual behavior (observations) and expected normal be- 
havior (predicted by the model), 

a diagnosis is a set of components whose abnormal be- 
havior can explain all the observed symptoms. A diag- 
nosis is minimal if it has no proper subset that is also a 
diagnosis. The diagnostic task is aimed at discovering all 
minimal diagnoses. 

A fundamental work in model-based diagnosis is con- 
stituted by the General Diagnostic Engine (GDE) [26], 
which provides a general, domain independent architec- 
ture for diagnosing any number of simultaneous faults in 
a system. Its diagnostic strategy is based on three main 
activities: 

Prediction: use observations and component models 
to make predictions about system behavior; 
Conflict recognition: recognize symptoms (i.e., dis- 
crepancies between predictions and observations) and 
construct the set of minimal conflicts. A conflict is a 
set of assumptions which support a symptom and lead 
to an inconsistency: a set of components is thus a 
conflict if the assumption that they are all correctly 
functioning leads to an inconsistency with some of 
the observations; 
Candidate generation: construct the set of minimal 
candidates. A candidate is a set of assumptions such 
that if all of them fail to hold, then all symptoms are 
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explained: a set of components is thus a candidate if 
hypothesizing an abnormal behavior for all of them 
can explain all the observed symptoms. 

This process is performed incrementally in response to 
every new observation. Furthermore, GDE introduces a 
sequential probing strategy that uses probabilistic infor- 
mation and a minimum entropy technique to discriminate 
among remaining candidates by performing as few mea- 
surements as possible. 

B. Limitations of Current Approaches to 
Model-Based Diagnosis 

The basic paradigm of model-based diagnosis refers to 
the use of a single monolithic model of the system to be 
diagnosed representing only structural and behavioral 
knowledge. This approach suffers from several limita- 
tions: 

1) Representation of symptoms. Symptoms can be rep- 
resented only in terms of structural and behavioral 
knowledge. However, in real-world diagnosis 
symptoms are often formulated at a more abstract 
level using functional or teleological knowledge; for 
example, in terms of a missing functional role or a 
missing process or in terms of unachieved goals. 

2) Representation of faults. Faults can be represented 
only in structural or behavioral terms thus causing 
the following problems: 
a) Fault representation can be inappropriate. Con- 

sider, for example, the case of a fault to the 
cooling system in a nuclear power plant. In this 
case, the representation of the fault in structural 
or behavioral terms could simply be at the wrong 
abstraction level and would fail to help the op- 
erator in the compensation task which requires, 
instead, information about mass and energy 
flow. 

b) Fault representation can be impossible. This 
happens, for example, when the symptomatic 
behavior of a system can be ascribed to unproper 
use or unproper operational conditions. 

3) Detection of symptoms. As it has already been 
pointed out by other researchers [l], not every be- 
havioral discrepancy is necessarily a true symptom. 
The observed behavior can be different from the ex- 
pected one, for example, an observed wave form is 
different in shape from the expected one. However, 
the normal functioning of the system may be 
achieved since the goals behind the two behaviors 
are the same. For example, the observed wave form 
cames the same energy of the expected one. 

4) Computational complexity. Diagnostic approaches 
based only on structural and behavioral models fea- 
ture a very high computational complexity, caused 
by the combinatorial explosion exhibited by the ac- 
tivities of prediction, conflict recognition, and can- 
didate generation in diagnosing complex systems. 

5 )  Physically erroneous diagnoses. The consistency 
based definition of diagnosis may provide diagnoses 

which are logically but not physically acceptable 
V I .  

Attempts to tackle these problems have followed two 
main directions. 

One direction has been to model a system at a more 
abstract level by explicitly representing knowledge about 
the functions, or the purposes associated to the system, 
by the designer [l], [31], [73]. However, diagnostic ap- 
proaches exploiting only functional or teleological knowl- 
edge also present some serious limitations. For example, 
since these approaches are able to consider symptoms rep- 
resented only in functional or teleological terms, a symp- 
tom has to manifest itself as a loss of function or purpose; 
otherwise, it cannot even be identified. Analogously, since 
faults can be represented only in functional or teleological 
terms it is impossible to diagnose, for example, parameter 
shifts if these shifts do not cause a loss of function or 
purpose. Moreover, diagnoses represented in terms of 
purpose and functions may be too abstract when a more 
detailed solution of the diagnostic problem is required, for 
example, at structural or behavioral level. 

Another direction has been aimed at combining differ- 
ent models of the system to be diagnosed in order to ex- 
ploit their cooperative problem solving power. These pro- 
posals have investigated a wide range of possibilities and 
perspectives such as 

Using a hierarchy of structural and behavior models 
of different aggregation levels [36]; 
Exploiting the integration of both qualitative and 
quantitative behavioral models 1341; 
Extending the GDE approach by incorporating fault 
models [42], [77]; 
Extending the GDE approach by exploiting models 
of different behavioral modes for each component 

Integrating empirical and functional models [3 11 or 
teleological and fault models [73]; 
Exploiting the integration of several models based 
on various knowledge types, namely: structural, be- 
havioral, functional, and empirical [ l ] ,  [lo], [16], 
W I ,  1431, 1601. 

Most of these approaches are characterized, however, by 
the following limitations: 

1) Absence of a general modeling approach. These ap- 
proaches usually achieve their integration goal by includ- 
ing functional or teleological knowledge within the be- 
havioral and structural model, or by establishing compiled 
associations between different models of the system. 
These solutions lead to very specific, hardly reusable 
models. Moreover, in the case of empirical associations, 
one of the main advantages of model-based reasoning, 
namely justification and explanation of diagnostic results, 
is impaired. 

2) Absence of a solid theoretical framework for model 
integration and cooperation. These approaches do not 
provide a framework where all the models are integrated 
in a clear and structured way. As a consequence, they 
have only a limited problem solving power. For example, 

1271; 
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a crucial problem with multiple models is the reformula- 
tion of results obtained within a model in terms of other 
models. Without a clear theoretical framework, current 
approaches are unable to tackle this problem in general 
terms. Usually the reformulation is hardwired in the rep- 
resentation and is only suitable for the specific application 
considered. 

3) Absence of a general theory of diagnosis based on 
multiple models. The formalization of the concept of di- 
agnostic task with multiple models is still an open prob- 
lem. 

C. The Multimodeling Approach to Diagnosis 
The multimodeling approach to diagnosis extends the 

model-based approach by exploiting the use of all the 
available knowledge about a system, i.e.,  fundamental, 
interpretative, and empirical knowledge which is appro- 
priately framed into separate but interconnected models. 
As a consequence, the concept of diagnosis assumes a 
greater generality since observations, symptoms, conflicts 
and faults are not required to be only of behavioral type 
but may concern any epistemological type. Moreover, in 
the multimodeling approach, the availability of different 
models where it may be possible to perform the same el- 
ementary diagnostic task, e.g., conflict recognition, and 
the clear separation existing between the domain level 
competence, i.e., competence relevant to reasoning “in- 
side” each model and the control level competence, Le., 
competence relevant to reasoning “through” models, al- 
lows for a greater flexibility. It is possible, for example, 
to experiment different diagnostic strategies or to adapt 
the diagnostic process to situations which impose specific 
constraints on the reasoning process in terms of limited 
computational resources, precision and accuracy of solu- 
tions, etc. by selecting the models that better satisfy the 
constraints. 

More specifically, the integration of interpretative and 
fundamental models offers several advantages which are 
briefly listed below: 

Diagnosing the operator behavior: the use of teleo- 
logical models allows us to consider faults which do 
not have a structural nature, such as unproper use 
by the operator. This capability is important in sev- 
eral real world applications where human errors 
have been recognized as the major cause of ob- 
served symptoms. 
Focusing the diagnostic activity: the use of inter- 
pretative knowledge allows the diagnostic task to be 
performed in a focused way. It is possible, for ex- 
ample, to start the diagnostic activity at the teleo- 
logical level and then, by exploiting the bridge be- 
tween teleology and behavior represented by 
functional knowledge, to consider only those parts 
of the structural and behavioral models which are 
responsible for the unachieved goals. This may re- 
sult in a considerable refinement of the conflict rec- 
ognition activity. 
Avoiding physically erroneous diagnoses: the use of 

4) 

functional models gives a global point of view of 
the system behavior which is interpreted in terms of 
processes and phenomena. In the consistency based 
approach to diagnosis, this may help in rejecting 
those diagnoses which are logically but not physi- 
cally acceptable. 
Representing symptoms and faults at different levels 
of abstraction: symptoms and faults can be repre- 
sented with reference to any available model thus 
allowing a diagnosis to be started or a fault to be 
formulated using different epistemological types or 
at different levels of aggregation in such a way as 
to match the specific features of the application do- 
main and the cognitive requirements of the user. 

The above advantages result in a diagnostic process 
which is more plausible from a cognitive point of view 
and in a better capability of producing acceptable justifi- 
cations, both in the case of successful reasoning and of 
failure. 

In order to experiment with the multimodeling ap- 
proach we have developed a prototype system called 
DYNAMIS. Its general architecture is inspired to the con- 
trol blackboard approach [40]. DYNAMIS includes sev- 
eral knowledge sources, called specialists, and two shared 
memories, called domain blackboard and control black- 
board, respectively. The specialists are divided into two 
classes: 

Control specialists, which manage the overall orga- 
nization of the problem solving activities at the do- 
main level. The control specialists perform the “rea- 
soning through models” activity; 
Domain specialists, which implement the basic rea- 
soning utilities within the various models used for 
representing the system considered. The domain spe- 
cialists perform the “reasoning inside a model” ac- 
tivity. 

A description of the DYNAMIS architecture (blackboard 
data structures, specialists, control) has been given in 

DYNAMIS has been implemented in PROLOG on a 
SUN-4 workstation. The DYNAMIS system has been 
used so far to experiment with three diagnostic applica- 
tions concerning a thermostat controlled home heating 
system [18], a turntable, and a lighting system. 

D.  A Sample Diagnostic Session 
In the following, we present a sample diagnostic ses- 

sion with DYNAMIS, focusing on the use of teleological 
and functional knowledge. The diagnostic session con- 
cerns the lighting system depicted in Fig. 10. The lighting 
system is devoted to the lighting of three separate rooms 
of a building and is constituted by four switches, four 
power regulators, eight bulbs, and some wires connecting 
these components. Fig. 11 shows the portions of the 
structural (STR) and behavioral (BEH) models relevant to 
the diagnostic session. The part of the lighting system 
represented in these models comprises the set of compo- 
nents which are common to the three circuits providing 

t191. 
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Fig. 10. Schema of the lighting system. 

electricity to the three rooms, i.e.,  mains, general switch, 
general power regulator, and wirel, together with the 
components that constitute the specific lighting subsystem 
of room B. The component “ROOM B” explicitly rep- 
resents the environment which is the destination of the 
light flow. The epistemological links that relate the struc- 
tural to the behavioral model and the links relating the 
behavioral model to the FUN.R model allow identifying 
the functional roles associated to components in the dif- 
ferent views. 

Fig. 12 shows the portions of the teleological (TEL-0, 
TEL-1) and functional (FUN.R, FUN.P, FUN.PH-0, 
FUN.PH-1) models of the system that will be used in the 
diagnostic session. Note that some components are bound 
to different functional roles in different physical views: 
the bulbs, for example, are conduits in the electrical view 
and generators of light flow in the optical view. By con- 
sidering only the electrical and optical views, six trans- 
porting processes are identified and represented in the 
FUN.P model: TRANS1, TRANS2, TRANS3 in the 
electrical view, and TRANS4, TRANSS, TRANS6 in the 
optical view. Each transport process in the electrical view 
directly causes one of the transport processes in the opti- 
cal view. Moreover, each of these three pairs of processes 
represents in the FUN.PH-1 model the organization of a 
phenomenon, which couples the electrical and optical 
views and represents conversion of electrical power into 
light. The three phenomena (PH2, PH3, PH4) are aggre- 
gated into the single phenomenon PH1 which is repre- 
sented in the FUN.PH-0 model. This phenomenon is as- 
sociated to goal G-1 . 1 in the TEL-1 model which specifies 
the desired relation between the electrical power provided 

to the bulbs in room B and the obtained light. Goal G-1.2 
specifies the desired relationship between the settings 
(knob position) of two power regulators (general power 
regulator and power regulator B) and the electrical power 
provided to the bulbs in room B. Finally, goal G-1 . 1 and 
G-1.2 are aggregated into the single goal G-0.2 in model 
TEL-0 which specifies the desired relation between 
the setting of power regulators and the obtained light in 
room B. 

The sample session presented in the following is orga- 
nized around three cases devoted to illustrate three main 
features of the DYNAMIS system: an elementary task de- 
voted to identify possible errors of the operator (i.e., op- 
erator diagnosis), an application of opportunity driven 
model selection to diagnosis (i.e., diagnosis focusing), 
and an application of functional knowledge to diagnosis 
(i.e., functional conflict recognition). 

When DYNAMIS is started, the reasoning through 
models activity is devoted to identify what kind of prob- 
lem the operator would like to solve, in order to allow the 
selection of a proper task specific problem solving 
method. 

DYNAMIS: Do you have any problem with the lighting 

OPERATOR: Yes. 
DYNAMIS: What is the problem? 
OPERATOR: Malfunction. 
DYNAMIS: Enter all information you have about the 

OPERATOR: 

system? 

lighting system. 

general switch ON general power regulator 0 

switch B ON power regulator B 50 
switch A ON power regulator A 0 

switch C ON power regulator C 0 

Since the operator presents a diagnostic problem where 
settings of controls (i.e., switches positions and knobs po- 
sitions of power regulators) are the only available data, 
DYNAMIS selects a task specific problem solving method 
which consists in first analyzing whether the operator is 
using the lighting system properly (by exploiting the el- 
ementary task operator diagnosis). If no errors of the op- 
erator are found, a diagnosis of the physical system is 
performed, by gathering initial symptoms (by exploiting 
the elementary task symptom gathering), and then by gen- 
erating and discriminating diagnoses (by iteration of the 
three elementary tasks conjlict recognition, candidate 
generation, and candidate discrimination). 

E. Operator Diagnosis 

In order to solve the elementary task “operator diag- 
nosis,” the teleological model at the highest level of ag- 
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STR 

to FUN.R 

ROOM B I 

I743 

... 
operating mode: OM-2 

end operating mode 

V9-V10= R2*19 <--> CS 
V12-V13=RlO*I12 <--> C7 
f l=  hl*R10*112*112 <--> G2 

17=G1 *(V7-V8) <---> C4 

... 

... 
V8=V9, I8+19=0 <--> (C4--CS) 

epistemological links 
{V7, I71 e--> GPR.ETI 
(V8, 18) <--> GPR. ET2 
{ e l )  <--> GPR.MT1 

{V9, 19) <--> Wire2.ET1 
(V10.110) <--> Wire2. EIT 
{ R2)<-->Wire2 

(Gl)<--> GPR 

(V12, U)<-->BulblB.ETl 
{V13.113)<-->B~lblB.EIT ... 
[V8=V9] <-->N4 
[I8+19=0] <--> N4 
[fl= hl*RlO*I12*112] <--> BulblB 
[V12-V13=R10*112] <--> BulblB 
[V9-V10= R2*19] <--> Wire2 ... 

electrical view 

operating mode: OM-1 [condition: 01=0] 
... 

:.:.:.:.: equations 
n=I8=0 

end operating mode 

operating mode: OM-2 [condition: 61M] 
... 

equations 
17=G18(V7-V8) 
I7+18=0 

' Gl=k*01 
end operating mode ... 

V8=V9 
I8+19=0 
V9-V10= R2*19 
I9+110=0 
v10=v11=v12 
IlO+Ill+I12=0 
V 12-V 13=R10*112 
I12+113=0 

optical view 
f l=  hl*R10*112*112 (hl:  lumedwatt) 
dLl/dt= f l  

... 

I 

mechanical view 
0l= user-defined , ... BEH 

m' 4 N10 

El2 5 
N14 

1 

component with terminals ET: electrical terminal 
MT: mechanical terminal 

+ node with terminals OT: optical terminal ........ connection in the electrical view - connection in the optical view 
*------ connection in the mechanical view 

Fig. 11. Partial structural and behavioral models of the lighting system. 
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0 process e e lec t ro -mech id  view 

0 functional role 

Fig. 12. Partial teleological and functional models of the lighting system 

gregation (Le., TEL-0) and the following models-based 
problem solving method are selected. There are cases 
where other models-based problem solving methods can 
be selected, for example, when complex temporal rela- 
tions are contained in the description of operation, or if 

there is need to take cognitive aspects into more consid- 
eration: 

MODELS-BASED PROBLEM SOLVING METHOD 
OD/01 
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COMMENT: this method requires SettingOfControls 
to be known and, using a teleological model, tries to 
identify 

WrongSettings, i.e., which settings the operator failed 
to set properly. 

BEGIN 
ask the operator which goals of the selected 

model he wants to achieve and 

“Definition of proper use” is then executed, obtaining 
the proper settings of controls required to achieve the goals 
stated by the operator. Then, the obtained proper settings 
of controls are compared with the actual settings, in order 
to find which are wrong. An incorrect match is found (Le., 
general power regulator is set to zero, while it should have 
been set higher) and the following message is displayed 
to the operator: 

let OperatorGoals be the set Of those goals DYNAMIS: Fault in the settings detected: 
definition-ofgroper-use(IN OperatorGoals, general power regulator must be set higher than zero. 

OUT ProperSettings) 
IF SettingofControl~ ( ) ProPerSettings THEN Since a wrong setting has been found, the submitted prob- 

lem is considered solved and the operator is told: Wrongsettings : = SettingOfControls 
- Proper Settings 

Wrongsettings := 63 
ELSE DYNAMIS: Your problem is solved. Do you want to 

terminate the session? 
ENDIF 

END 
As it can be noticed, this models-based problem solv- 

ing method uses “definition of proper use,” the basic rea- 
soning utility which considers the set of operator goals 
and tries to derive the specification of the system settings 
required to achieve them. There are two possible out- 
comes for this basic reasoning utility: i) a consistent spec- 
ification for system settings is found or ii) the specifica- 
tion of required system settings contains contradictory 
actions (for example, a system control should be set si- 

The operator, before terminating the session, tries the 
suggested intervention to check if it can actually solve the 
problem. So, he sets the general power regulator to 50. 
Unfortunately, the lighting system does not yet operate as 
expected, therefore he answers negatively to the above 
question : 

OPERATOR: No 

DYNAMIS then tries to identify the reasons why the op- 
erator wants to continue the session: 

niultaneously to ON and OFF) or inconsistent temporal 
information (for example, system control X must be set 
after system control Y which, in turn, must be set after 
W .  In the first case, ‘‘definition of proper use” succeeds 
and the models-based problem solving method proceeds. 
If the actual settings of controls is different from the proper 
one, the difference (obtained by set subtraction) between 

DYNAMIS: Have you corrected the settings as sug- 

OPERATOR: Yes 
DYNAMIS: After having corrected the settings appro- 

priately, is the lighting system working as you want? 
OPERATOR: N~ 

gested? 

actual and proper settings of controls identifies an error of 
the operator. In the second case, “definition of proper 
use” fails (leading to failure of the models-based problem 
solving method) and records an explanation of its failure, 
which can be used for a failure-driven model selection and 
the choice of the next models-based problem solving 
method. In this way, teleological knowledge can be fur- 
ther exploited to engage the operator in a training dia- 
logue aimed explicitly at showing him which goals are 
inconsistent and the reasons why they are inconsistent. 
The operator could be then supported in the revision of 
his goals. 

In the current session, goals found by DYNAMIS in 
TEL-0 are G-0.1, G-0.2 and G-0.3. Therefore, the op- 
erator is engaged in the following dialogue: 

DYNAMIS: Select which are your goals from this list: 

OPERATOR: light room B 
DYNAMIS: So, your goals are: 

Is this right? 
OPERATOR: Yes 

light room A light room B light room C 

NOT light room A light room B NOT light room C 

Since the answer of the operator shows that he consid- 
ers the system still malfunctioning and since settings of 
controls have now been set properly, the current task-spe- 
cific problem solving method focuses next on diagnosing 
the lighting system. 

Before proceeding further, let us stress that operator di- 
agnosis, made possible through exploitation of teleologi- 
cal knowledge, allows considering the operator as a part 
of the diagnosed system and as a possible cause of mal- 
functions. This capability is of primary importance in sev- 
eral real world applications. For example, in the field of 
plant supervision and operation, human errors of control 
room operators have often been recognized as a major 
cause of faults or critical events. Also in the field of after- 
sales support of consumer or professional devices in- 
stalled in homes, offices, or factories, service personnel 
often receive calls for intervention from people who are 
simply misusing a system which is functioning perfectly. 

F. Diagnosis Focusing 
The next elementary task “symptom gathering” in the 

current task-specific problem solving method consists in 
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finding initial symptoms. At the moment, DYNAMIS is 
not yet aware of any symptom. In order to execute 
“symptom gathering,” the reasoning through models ac- 
tivity selects a models-based problem solving method 
which consists of 1) identifying which goals the operator 
considers as symptoms, (i.e., those goals whose una- 
chievement or achievement does not match operator ex- 
pectations) and 2) asking for initial observations concern- 
ing those goals, thus verifying if operator judgement about 
them is correct. 

MODELS-BASED PROBLEM-SOLVING METHOD 
SG/O 1 

be known and, using a teleological model, identifies the 
set 

as symptoms) and verifies if operator judgement about 
those goals is correct 

COMMENT: this method requires OperatorGoals to 

TelSymptoms (i.e., those goals the operator considers 

BEGIN 
ask the operator to pinpoint those goals in 

OperatorGoals which do not 
match his expectations and 

let TelSymptoms be the set of 
those goals 

FOREACH Goal in TelSymptoms DO 
ask the operator to observe Outputs of 

IF (user answer = Outputs of Goal) 

ENDIF 

Goal 

THEN fail 

ENDDO 
END 

This method can end with success or failure. In the first 
case, results of the observations help to better qualify the 
symptoms. For example, knowing that room B is too 
much, too little, not at all or only partially lit is more 
useful in focusing the diagnostic process than knowing 
only that the operator deems the “light room B” goal un- 
achieved. In the second case, some observations contra- 
dict what the operator stated. For example, the operator 
deems room B excessively lit and reports the problem to 
the system, but the level of lighting obtained is exactly 
what the model predicts for the actual settings of controls. 
In the latter case, an interesting situation arises: a correct 
system behavior is deemed a symptom by the operator. 
This requires a finer operator diagnosis aimed at identi- 
fying operator’s misconceptions about the physical sys- 
tem (operator diagnosis as performed before was aimed 
only at identifying wrong settings of controls). 

Following the models-based problem solving method 
described above, DYNAMIS starts by asking the operator 
which of his goals he considers as symptoms: 

DYNAMIS: Please, tell me which of your goals 
NOT light room A light room B NOT light room C 
are not satisfied. 

OPERATOR: light room B 

The set of goals considered as symptoms by the operator 
consists then of a single goal. So, DYNAMIS asks the 
operator for some easily observable facts relevant to that 
goal: 

DYNAMIS: Is bulb 1 in room B lit up? 
OPERATOR: No 
DYNAMIS: Is bulb 2 in room B lit up? 
OPERATOR: No 
DYNAMIS: Is bulb 3 in room B lit up? 
OPERATOR: Yes 

All three bulbs should have been lit up, so goal G-0.2 and 
at a lower level goal G-1.1 are actually not achieved 
(while they should have been achieved). DYNAMIS has 
now a better description of the symptom which will be 
used to focus the following steps of the diagnostic activ- 
ity. 

Since goals which are actually symptoms have been 
found, the possibility of performing an opportunity- 
driven model selection (i.e., switching to the functional 
representation to perform the next elementary task of the 
current task-specific problem solving method) is detected 
in the reasoning through models activity. So, the avail- 
able observations are first translated from the teleological 
model into the functional models. The translation is ac- 
complished by traversing the links connecting them. More 
precisely, considering the functional models in Fig. 12, 
the available informations in the teleological model will 
be translated into: 

Phenomena PH1, PH3 and PH4 are not satisfied (this 
identifies three symptoms in the FUN. PH-0 and 
FUN.PH-1 models), while phenomenon PH2 is sat- 
isfied; 
Processes TRANS5 and TRANS6 are inactive (this 
identifies two symptoms in the FUN.P model), while 
process TRANS4 is active; 
Generators G2 and G3 are not generating light (this 
identifies two symptoms in the FUN.R model), while 
generator G4 is generating light. 

The currently available information about settings of con- 
trols is also translated (e.g., switch B set to ON corre- 
sponds to conduit C10, etc.). 

The teleological model is used to focus the diagnostic 
process in the functional models. Focusing consists here 
in identifying the portion of the functional models which 
corresponds to those goals which constitute the most de- 
tailed symptoms in the teleological model (goal G- l .  l in 
the current case). In particular, focus control which 
switches the diagnostic reasoning from the teleological 
model to the functional models is carried out by: 1) se- 
lecting the goals at the lowest levels of aggregation among 
those goals which are symptoms and 2) starting from the 
selected goals and traversing links to reach and select cor- 
responding parts in the functional models. 

Fig. 12 shows the functional role network and process 
network selected in the current case: they describe only 
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those roles and processes supporting the phenomena 
linked to goal G-1.1, which is unachieved. 

G. Functional ConJEict Recognition 

As shown in the previous part of the session, DY- 
NAMIS has just switched to the functional models and 
selected only a portion of these models, where the next 
elementary task, “conflict recognition,” has to be exe- 
cuted in order to generate the conflict set. In functional 
terms, a conflict is a set of functional roles where at least 
one role must be violated. That role is expected in the 
model of the physical system but would not be found in 
the real system. The following models-based problem 
solving method is devoted to construct the conflict set: 

MODELS-BASED PROBLEM-SOLVING METHOD 
CR/02 

COMMENT: this method requires at least one symptom 
in FUN.P to be known and, using the selected aggre- 
gation level of FUN.R and FUN-P, tries to build 
FunConflictSet, i.e., the functional conflict set. 

BEGIN 
FunConflictSet := { } 
OKRoles := { } 
FOREACH Symptom in FUN.P DO 

functional-dependency -analy sis(1N 
Symptom, OUT SetsofProcesses) 

FOREACH SetofProc in SetsofProcesses 
DO 

Roles : = union of the sets of 
functional roles that are con- 
nected by epistemological links 
to the processes in 
SetOfProc 

Set U {Roles} 
FunConflictSet : = FunConflict- 

ENDDO 
ENDDO 
FOREACH Obs in FUN.P : Obs is NOT a 

symptom DO 
functional-dependency-analysis(1N Obs, 

Roles : = union of the sets of functional 
OUT Processes) 

roles that are connected by 
epistemological links to the 
processes in Processes 

OK Roles : = OK Roles U Roles 
ENDDO 
FOREACH Set in FunConflictSet DO 

ENDDO 
Set : = Set - OKRoles 

END 

The models-based problem solving method constructs 
the conflict set by first using symptoms in the FUN.P 
model and identifying the processes and functional roles 

which may be responsible for the symptoms in order to 
generate an initial conflict set (this activity is carried out 
by the first and second FOREACH structures in the 
models-based problem solving method). Then, it tries to 
prune, if possible, the initial conflict set using functional 
observations which are not symptoms (referred to as nor- 
mality observations in the following): 1) by identifying 
the processes and functional roles which are necessary to 
support the normality observations (this activity is carried 
out by the third FOREACH structure in the models-based 
problem solving method), and 2) by subtracting such roles 
from the current conflicts (this activity is carried out by 
the fourth FOREACH structure in the models-based prob- 
lem method). 

In the current session, functional symptoms in FUN.P 
are “process TRANS5 is inactive” and “process 
TRANS6 is inactive.” There is only one normality ob- 
servation in FUN.P, namely “process TRANS4 is ac- 
tive.” The two symptoms in FUN.P are considered in the 
models-based problem solving method CR/02 in order to 
generate the initial conflict set. ‘‘Functional dependency 
analysis” determines that TRANS2, if inactive, can be 
the cause of the symptom “TRANS5 is inactive,” and 
therefore, the basic reasoning utility returns the set 
{ {TRANS2, TRANS}}.  Then, all the roles belonging to 
the cofunction of TRANS2 and TRANS5 are identified by 
means of epistemological links. These roles are taken as 
elements of a conflict, meaning that at least one role in- 
volved in supporting TRANS2 or TRANS5 must be vio- 
lated. The generated conflict is therefore: 

CFTl = {GI, C2, C3, C4, C5, C6, C8, C13, C12, 

C11, C10, C9, G3, C17). 

Following the same line of reasoning and considering the 
symptom “TRANS6 is inactive,” the following second 
conflict is generated: 

CFT2 = {Gl ,  C2, C3, C4, C5, C7, C12, C11, C10, 

C9, G2, C17). 

The initial conflict set is constituted by the two sets CFTl 
and CFT2. Now, the conflict set is possibly pruned, by 
searching for roles which cannot be violated. Since there 
is one normality observation (“TRANS4 is active”) in 
FUN.P, functional dependency analysis is invoked to de- 
termine which processes are necessary to support the nor- 
mality observation. The invoked basic reasoning utility 
determines that TRANS3 must be necessarily active in 
order to support the normality observation “TRANS4 is 
active. ” Then, all those roles belonging to the cofunction 
of TRANS4 and TRANS3 are identified by means of ep- 
istemological links. In order to have TRANS4 and 
TRANS3 active, the identified roles cannot be violated. 
The set of roles thus generated is: 

( G l ,  C2, C3, C4, C5, C6, C14, C15, C16, C13, C12, 

C11, C10, C9, G4, C17). 
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Since these roles cannot be violated, they are now sub- 
tracted from conflicts CFTl and CFT2. Thus the execu- 
tion of the models-based problem solving method CR/02 
terminates by generating the pruned conflict set: 

{CFTl = (C8, G3), CFT2 = (C7, G2)) .  

Being the conflict set now available, the possibility of per- 
forming an opportunity driven model selection (i.e., 
switching to the structural model for executing the next 
elementary task “candidate generation” within the task- 
specific problem solving method) is detected. The conflict 
set is first translated in structural terms, by traversing the 
links between FUN.R and BEH and the links between 
BEH and STR: in our case, CFTl becomes (BULB2B) 
and CFT2 becomes (BULBlB). Then reasoning is 
switched to the structural model, where the minimal sets 
which have a nonempty intersection with every conflict 
are computed, following [26]. The only candidate which 
can be generated from {BULB 1B) and { BULB2B) is thus 
the common superset (BULBlB, BULB2B). Since in this 
case there are not multiple candidates, the next elemen- 
tary task (Le., candidate discrimination) does not need to 
be executed and the diagnostic process terminates and 
provides the generated candidate as the solution of the 
current problem. The following message is then displayed 
to the operator: 

in considering the various combinations of different 
possible faults. 

Avoidance of physically erroneous diagnoses is made 
possible using functional knowledge without requiring that 
a complete set of fault models is available and that all 
possible combinations are tested, because of the follow- 
ing three reasons: 

1) The functional model is based on the representation 
of the generalized substances flowing through the system. 
Processes give a global point of view of the paths which 
these flows follow and cofunctions of processes identify 
all functional roles involved in supporting a specific pro- 
cess. The epistemological link (established by the cofunc- 
tion) between functional roles and the processes they sup- 
port ensures that physical consequences of local role 
changes are globally reflected. For example, in the con- 
sidered lighting system a change of role C2 from conduit 
to barrier could not explain the fact that processes 
TRANS1 and TRANS2 are inactive if TRANS3 has been 
observed to be active. Since C2 would be responsible for 
stopping electrical flow, thus deactivating TRANS 1 and 
TRANS2, it would also deactivate TRANS3. 

2) The functional model is based on generalized func- 
tional roles which can undergo only a small set of physi- 
cally legitimate changes. Thus, for example, a conduit 
cannot become a generator, while it can become a barrier. 

DYNAMIS: The cause of malfunction has been located: 

DYNAMIS: Your problem is solved. Do you want to ter- 
minate the session? 

3) The functional model provides an explicit represen- 
tation of dependence relations between different physical 
views. Thus, for example, a bulb cannot be a light gen- 
erator (in the optical view) if electrical current does not 

bulb 1 and bulb 2 in room B are faulty. 

At this point the operator may, for example, ask for fur- 
ther explanations about system conclusions, which DY- 
NAMIS can provide by resorting again to functional 
knowledge. 

It is interesting to note that the use of functional knowl- 
edge allows the system to avoid the generation of physi- 
cally erroneous diagnoses, a problem which affects the 
GDE method [26]. As indeed demonstrated in [77], the 
diagnoses generated by GDE in the examined case would 
include, in addition to the correct one, other physically 
erroneous diagnoses, such as: 

{MAINS, BULB3B): there is a fault in the mains 
power supply (bulblB and bulb2B are not lit up) and 
a fault in bulb3B (it is lit up even if no electrical 
current flows through it); 
{WIREl, WIRE7): wire 1 is faulty (bulblB and 
bulb2B are not lit up) and wire 7 is faulty (it pro- 
duces power). 

To avoid the generation of physically erroneous diagnoses 
in GDE, the approaches proposed in [27] and [77] rely on 
the use of fault models of system components. However, 
this solution requires: 

To have complete knowledge of the various ways 
components may fail (otherwise false conclusions 
may be drawn again); 
To manage the combinatorial explosion which arises 

flow through it (in the electrical view). 
All these three features have been used implicitly in the 

above example to avoid generation of physically erro- 
neous diagnoses. Diagnosis (MAINS, BULB3) is not 
generated thanks to points 1 (there is no electrical current 
through BULB3 if MAINS is not providing power) and 3 
(BULB3 cannot generate light if there is no electric cur- 
rent through it). Diagnosis {WIREl, WIRE7) is not gen- 
erated thanks to point 2 (WIRE7 cannot become a gen- 
erator). Note that even admitting that WIRE7 can become 
a generator, the diagnosis {WIRE 1, WIRE7) would still 
not be generated, since point 1 would highlight that elec- 
trical current through BULB 1, BULB2 cannot be stopped, 
in this case, by WIRE1 being faulty. 

In case the diagnostic application would require ex- 
plicit fault models to provide precise descriptions of faults 
(for example, “BULB1 is burned”), they can easily be 
represented in the multi-modeling approach as part of the 
empirical model. 

VIII. CONCLUSION 
In this paper we have illustrated three main topics: 

The main concepts of the multimodeling approach; 
The representation and use of functional and teleo- 
logical knowledge within the multimodeling ap- 
proach; 
The exploitation of multimodeling in diagnosis. 
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The main contributions of the presented work are: propriate, for example, phenomena concerning static 
equilibrium; 
Application of the multimodeling approach to sys- 
tems other than physical artifacts, such as, natural 
systems (e.g., rivers, lakes, soil, volcanoes, etc.) or 
conceptual systems (e.g., social, economic, etc.); 
Exploitation of the capability of the multimodeling 
approach to deal with incomplete models. 

A general and theoretically founded framework for 
organizing and using many diverse models of a phys- 
ical system in a cooperative way, thus providing a 
novel concept of model-based reasoning; 
A clear definition of the concepts of function and te- 
leology and of their relations to structure and behav- 
ior; 
The design of a novel knowledge organization and 
reasoning paradigm which can support a large vari- 
ety of complex problem solving tasks, such as inter- 
pretation, diagnosis, design, simulation, etc. 

Moreover, from a cognitive perspective, the multimod- 
ding approach can support the design of more adequate 
model-based systems, thus improving the level of man- 
machine coupling. In particular, it provides a concrete ba- 
sis for: 

1) Choosing (or enabling the user to choose) the most 
appropriate model to be used in a specific problem 
solving task. In this way, the system can help the 
user in reducing the complexity and opacity of the 
computer representation of the physical system at 
hand, by acting as a logical filter [44] focusing user 
attention only on the relevant knowledge. More- 
over, the user can evaluate different interpretations 
of the situation at hand and focus on particular data, 
domains, or hypotheses. As a result, he can release 
part of his mental workload and understand his er- 
rors. The possibility of experimenting with several 
different models can also increase user conceptual- 
ization capabilities, as pointed out in [83]; 

2) Accounting for user actions, identifying erroneous 
interventions, deducing their consequences, and 
suggesting possible recovery operations; 

3) Offering an appropriate environment for the study 
and simulation of human errors [69]. In fact, when 
the user formulates a specific action plan, slips can 
be characterized as an erroneous execution of a cor- 
rect plan (due to stress, fatigue, etc.), while mis- 
takes can be ascribed to erroneous knowledge pres- 
ent in the models or to erroneous use of the models 
leading to the formulation of an incorrect plan. 

Finally, in the multimodeling approach, the disciplined 
and structured exploitation of functional and teleological 
knowledge turned out to be fully adequate for supporting 
innovative strategies in the specific domain of system di- 
agnosis, such as operator diagnosis, diagnosis focusing, 
and functional conflict recognition. 

Future activity will focus on the following main issues: 

Design of further general diagnostic strategies based 
on multimodeling; 
Application of the multimodeling approach to design 
tasks; 
Extension of the approach to functional and teleo- 
logical modeling so far proposed to deal with new 
domains where the flow structure paradigm is not ap- 
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