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Abstract. Keyphrase extraction is a task of crucial importance for dig-
ital libraries. When performing automatically a task of this, the context
in which a specific word is located seems to hold a substantial role. To
exploit this context, in this paper we propose an architecture based on
an Attentive Model: a neural network designed to focus on the most rele-
vant parts of data. A preliminary experimental evaluation on the widely
used INSPEC dataset confirms the validity of the approach and show
our approach achieves higher performance than the state of the art.

1 Introduction

The continuous growth of textual digital libraries, in terms of both importance
and size, urgently requires advanced and effective tools to extract automati-
cally, for each document, the most relevant content. To achieve this goal, the
Natural Language Processing Community exploits the concept of “Keyphrases”
(KPs), which are phrases that “capture the main topics discussed on a given
document”[33].

Extracting KPs from a document can be done manually, employing human
judges, or automatically; in the latter case we talk about Automatic Keyphrase
Extraction (AKE), a task whose importance has been growing for the last two
decades [13]. In fact, the ability to extract automatically keyphrases from docu-
ments will make it possible to build more effective information retrieval systems
or to summarize [37] or cluster [12] textual documents. Other fields worth men-
tioning where AKE can be applied are social network analysis [26] and user
modeling [27].

Classic AKE approaches rely on Machine Learning algorithms. More specifi-
cally, supervised techniques have been used for this task: Naive Bayes [34], C4.5
decision trees [33], Multilayer Perceptrons [20,3], Support Vector Machines [20],
Logistic Regression [3,11], and Bagging [16]. Relevant works that investigated
the unsupervised extraction of Keyphrases used a language model approach [32]
or a graph-based ranking algorithm [23]. However, these approaches achieved
lower performance than the one obtained in the supervised case.

Due to this difference in performance, in the last years research focus shifted
towards the features exploited by supervised algorithms. The kind of knowledge
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encoded in the model can be used to discriminate between different families of
approaches: statistical knowledge (number of appearances of KPs in the docu-
ment, TF-IDF, number of sentences containing KPs, etc.), positional knowledge
(first position of the KP in the document, position of the last occurrence, appear-
ance in the title or in specific sections, etc.), linguistic knowledge (part-of-speech
tags of the KP [16], anaphoras pointing to the KP[3], etc.), external knowledge
(presence of the KP as a page on Wikipedia [7] or in specialized domain ontolo-
gies [20], etc.). Despite being a subject on several studies, AKE is still an open
problem in the NLP field: in fact, even the best techniques for this task reach at
best an average performance F1-Score around 50% [16,18].

Although Deep Learning techniques have been recently established as state-
of-the-art approaches in many NLP tasks (i.e. sentiment classification, machine
translation, etc.), to the best of our knowledge, only a few Deep Learning models
addressed the AKE task. Zhang et al. [36] proposed a deep Recurrent Neural
Network (RNN) model that combines keywords and context information to be
exploited in the AKE task in Twitter domain. In particular, their model consists
of a RNN model with two hidden layers: the first captures the keyword informa-
tion, the second extracts the keyphrases according to the keyword information.
Meng et al. [22] addressed the challenge of generating keyphrases that are not
present in the text, investigating Encoder-Decoder Neural architecture [31]: the
underlying idea is to compress the text content into an hidden representation
using an encoder and generate the corresponding keyphrases with a decoder.
Basaldella et al. [2] proposed an architecture for AKE based on Bidirectional
Long Short-Term Memory (BLSTM) RNN, which is able to exploit both previ-
ous and future context of a specific word, differently from simple RNNs that can
exploit only the previous context.

In parallel with these initiatives, the class of Attentive Models [31,35] started
gaining more and more interest in NLP community, because they have been suc-
cessfully applied in various text understanding tasks, like neural machine trans-
lation from a language to another [31,1,21], abstracting text [25] and sentence
summarization [30]. To our knowledge, however, these Models have not been
employed in AKE tasks.

In this paper, we investigate the usage of Attentive models in the Keyphrase
Extraction domain. The rationale behind this choice is that Attentive Models
provide weights that indicate the relevance of a word with respect to its context
[1,35] and thus can help in extracting keyphrases. Preliminary experimental re-
sults on the widely used INSPEC dataset [16] confirm our hypothesis and show
that our approach outperforms the competitors.

2 Keyphrase Extraction Approach

We aim at developing a system that, given a text document, is able to automat-
ically extract its keyphrases. Our solution consists of a neural network architec-
ture that combines Recurrent Neural models with an Attentive component. The
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Fig. 1. Overview of the proposed approach.

proposed model takes as input a text and returns as prediction an annotated
text (see Fig. 1).

First, text is split into sentences, and then tokenized in words using the
library NLTK [4]. Each word is then mapped into a continuous vector represen-
tation, called word embedding, that according to recent studies [6,24] represents
the semantics of words better than the “one hot” encoding word representation.
For our work we used Stanford’s GloVe Embeddings [29], since the common
datasets adopted for AKE task are rather small, making it difficult to build
custom embeddings.

However, when dealing with the keyphrase extraction, words cannot be treated
with the same importance (for example, a stop word is less important than a
noun, adjectives and adverbs enrich a speech but add almost nothing to the core
meaning of it, etc.).

To encode this core feature, we propose to integrate in our pipeline an atten-
tive neural component. In fact, attention models are inspired by human attention
mechanisms, that do not use all the available information at a given time, but
select the most pertinent piece of information, leaving out the parts considered
irrelevant [17,8].

The goal of our Attentive Model is to associate to each word of the text an
attentive value, i.e. a weight representing the attention level of the word: this
information is then exploited in the subsequent processing phase and we claim
it can have a significant role for a more effective and precise identification of
KPs. To compute such attentive values, the Attentive Module needs, for each
word w in the text, (i) the corresponding word embedding and (ii) the so called
context, that is a representation of the semantics of the words appearing in the
text before and after the word w. The context is computed by a specific module,
the Context Encoder, which exploits a BLSTM network capable of producing a
non-linear combination of the word embeddings belonging to the previous and
future surroundings of w.

Finally, to extract keyphrases, the Extractor module combines word em-
beddings and the attentive values (concatenating their results) by means of a
BLSTM neural model which is able to analyze word embeddings and their se-
quential features and to effectively deal with the variable lengths of sentences.
For each word, the output consists of three possible classes: NO KP for words
that are not keyphrases, BEGIN KP for words corresponding to the first token
of a keyphrase, INSIDE KP for a token, other than the first one, belonging to a
keyphrase (see Fig. 2 for more details).



4

Fig. 2. Detailed Schematization of our solution.

2.1 Attentive Module and Context Encoder

To extract the importance of a word in a given sentence we propose to use an
attentive model. Our attentive model exploits the semantic representation of
each word (the word embeddings) and the context in which the word is located.
The main idea is to identify words that are more related to the context. In our
architecture the context is defined as the output results of a BLSTM that takes
in input the word embeddings of the text.
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Let S be the matrix formed by the word embeddings w1, w2, . . . , ws and C
the matrix formed by the context vectors c1, c2, . . . , cs (see Fig. 2). The size of
each context vector is equal to size of the word embedding vector. Therefore, S
and C are both s×d matrices, where d is the dimension of the word embeddings.

Our attentive model first performs the matrix multiplication between C and
the transpose of S, resulting in a new matrix M . More formally, each element
of M , mi,j (where i is the row and j is the column) is computed as follows:

mi,j =

d∑
k=1

(Ci,k · Sj,k) (1)

Then, we compute the normalization of the matrix M using a softmax layer
(that behaves almost like a argmax, but is differentiable) as follows:

mi,j =
emi,j

s∑
k=1

emi,k

(2)

Every item of M is now the range of 0 and 1 and the sum of each row is
equal to 1. The element mi,j represents the attention score of the word wj in
the classification context of the word wi. Through matrix multiplication between
the matrices M and S we compute the matrix A, where each row represents the
output of the attentive model.

The attentive output is then used as input in a Dense layer in order to
manage the contribution of the attentive model in the final word representation.
The output vectors coming out from this Dense layer are finally concatenated
with the initial embeddings and fed into the classifier BLSTM.

Figure 3 illustrates a single iteration of the attentive model that we just
outlined. Specifically, we represented the case where the importance of the single
words is computed against the context vector c3 and saved into the vector a3
(in our case, this represents the third row of A). It is important to point out
that there are as many context vectors as there are word embeddings and each
context vector is different from the others, thus each subsequent iteration will
use a different context vector and will consequently compute a different vector
of weights.

2.2 Bidirectional Long Short-Term Memory (BLSTM)

Differently from feedforward neural networks, where the inputs are independent
of each other, Recurrent Neural Networks (RNNs) keep an internal state that
allows them to process sequences of inputs, with each input related to each other,
thus granting the persistence of the information. RNNs are often employed in
NLP tasks where the context is an important component needed to compute the
predictions.

As Recurrent Neural Network, we adopt the Long Short-Term Memory (LSTM)
architecture [15], a common and effective solution employed to reduce the van-
ishing gradient problem [14] that typically affect plain RNNs. In particular an
LSTM is defined as follows [9]:
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Fig. 3. Outline of a single iteration of the attentive layer.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (5)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (6)

ht = ot tanh(ct) (7)

where σ is the logistic sigmoid function, i, f , o, and c are the input gate,
forget gate, output gate and cell activation vectors, and all b are learned biases.

This kind of architecture, however, contemplates only previous information,
but in our case, dealing with the AKE task, future information can support the
identification of a possible keyphrase. For this reason a variant of the LSTM ar-
chitecture is used, namely the Bidirectional LSTM architecture [10], that allows
us to employ both past and future information. In a BLSTM the output yt is

obtained combining the forward hidden sequence
−→
ht and the backward hidden

sequence
←−
ht . A BLSTM is then defined as follows:



7

Table 1. Performance obtained varying the dimension of the attentive layer.

Embedding Attentive Dim. Precision Recall F1-score MAP F1@5 F1@10

Glove-200 (Baseline) - 0.326 0.643 0.432 0.356 0.286 0.353

Glove-200 10 0.291 0.624 0.397 0.327 0.271 0.326
Glove-200 20 0.348 0.654 0.455 0.370 0.297 0.371
Glove-200 30 0.373 0.658 0.476 0.388 0.313 0.394
Glove-200 40 0.321 0.648 0.429 0.356 0.287 0.350

−→
ht = H(W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h
) (8)

←−
ht = H(W

x
←−
h
xt +W←−

h
←−
h

←−
h t−1 + b←−

h
) (9)

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by (10)

3 Experimental Results

To valid our solution, we used the well-known INSPECT dataset [16], which
consists by 2000 abstract papers written in English extracted from journal papers
from the disciplines Computer and Control, Information Technology. The dataset
is split in: 1000 documents as training set, 500 documents as validation set, 500
documents as test set.

To write the implementation of our approach we used Pytorch [28]. The GPU
employed in our experiments is a GeForce GTX 660 Ti. We train our network
aiming at minimizing the Crossentropy Loss and the training is done using the
Root Square Mean Propagation optimization algorithm [19]. The data is loaded
into the network in batches, where each batch has a size of 32 input items.
The experiments have been run with different configurations of the network’s
parameters, finally obtaining the best results with a size of 30 neurons for the
Attentive Model, 150 neurons for the BLSTM used for classification, 150 neurons
for its hidden dense layer and a value of 0.5 for the Dropout layer before the
final Dense layer. The Pytorch framework does not implement a early-stopping
mechanism; for this reason, we empirically set the number of epochs to 14.

The first of our experiments aimed at reproducing Basaldella et al. [2] results
(an approach based on word embeddings and BLSTM) in order to create a solid
baseline against which we can compare the results obtained by our approach
based on an attentive module. Baseline results presented in Table 1 are slightly
better than the original ones [2], because here we adopted a different value of
the dropout layer.

Table 1 also presents performance varying the dimension of the attentive
module: the size of the Dense layer that allows us to weight the attention effect.
Note that a small attentive layer does not bring any benefit, on the contrary the
performances are lower compared to the baseline where no attentive module is
present. The reason behind this behavior may be the attentive layer focusing on
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Table 2. Comparison results on INSPEC dataset

Method Precision Recall F1-score F1@5 F1@10

Proposed approach 0.373 0.658 0.476 0.313 0.394
BiLSTM [2] 0.340 0.578 0.428 - -
KP Generation [22] - - - 0.278 0.342
n-grams with tag [16] 0.252 0.517 0.339 - -
NP Chunking with tag [16] 0.297 0.372 0.330 - -
Pattern with tag [16] 0.217 0.399 0.281 - -
TopicRank [5] 0.348 0.404 0.352 - -

a part of information that is too small and leaving other important parts out.
Further increasing the dimension of the attentive module causes an improvement
to the performances achieving the best score (in all metrics) with an attentive
layer of dimension 30. An additional increase of the attentive layer makes it focus
on a part of information that is too big, actually not focusing on anything in
particular thus not making use of the attention mechanism. In fact, performance
are similar to the ones obtained without attentive model.

Finally, we compare our results with state-of-the-art systems, which rely on
supervised and unsupervised machine learning techniques (see Table 2). The
first system is the one proposed in [2] that uses a BiLSTM architecture (our
baseline); the second technique proposed an approach based on Encoder-Decoder
Neural architecture [22]; the next three are works presented in [16] that use
three different techniques, respectively: n-grams, Noun Phrases (NP) chunking
and patterns; the last one [5] relies on a topical representation of a document,
making use of graphs to extract keywords. Note, our proposed approach achieves
state of the art performance under every measure considered. It is worth noting
that we perform better than the results presented in [2] and [22], two recent
works that make use of Deep Learning techniques.

4 Conclusion

In this work, we proposed a network that uses an Attentive Model as its core
in order to perform automatic keyphrase extraction. The approach has been
validated on the well-known INSPEC dataset and the experiments have been
performed varying the size of the attentive model. Comparison evaluation shows
that our approach outperforms competitive works on all metrics. As future works
we intend testing the proposed architecture on other Keyphrase datasets and
we will investigate advanced attentive architectures, such as Tree and Graph
Attention models that can deal with complex text representation.
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