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Image captioning has been recently gaining a lot of attention thanks to the impressive achievements shown by
deep captioning architectures, which combine Convolutional Neural Networks to extract image representa-
tions and Recurrent Neural Networks to generate the corresponding captions. At the same time, a significant
research effort has been dedicated to the development of saliency prediction models, which can predict human
eye fixations. Even though saliency information could be useful to condition an image captioning architec-
ture, by providing an indication of what is salient and what is not, research is still struggling to incorporate
these two techniques. In this work, we propose an image captioning approach in which a generative recur-
rent neural network can focus on different parts of the input image during the generation of the caption, by
exploiting the conditioning given by a saliency prediction model on which parts of the image are salient and
which are contextual. We show, through extensive quantitative and qualitative experiments on large-scale
datasets, that our model achieves superior performance with respect to captioning baselines with and without
saliency and to different state-of-the-art approaches combining saliency and captioning.
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1 INTRODUCTION

A core problem in computer vision and artificial intelligence is that of building a system that can
replicate the human ability of understanding a visual stimulus and describing it in natural lan-
guage. Indeed, this kind of system would have a great impact on society, opening up new progress
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in human-machine interaction and collaboration. Recent advancements in computer vision and
machine translation, together with the availability of large datasets, have made it possible to gen-
erate natural sentences describing images. In particular, deep image captioning architectures have
shown impressive results in discovering the mapping between visual descriptors and words [24, 55,
56, 59]. They combine Convolutional Neural Networks (CNNs), to extract an image representation,
and Recurrent Neural Networks (RNNs), to build the corresponding sentence.

While the progress of these techniques is encouraging, human ability in the construction and
formulation of a sentence is still far from being adequately emulated in today’s image captioning
systems. When humans describe a scene, they look at an object before naming it in a sentence
[14], and they do not focus on each region with the same intensity, as selective mechanisms attract
their gaze on saliency and relevant parts of the scene [43]. Also, they care about the context using
peripheral vision, so that the description of an image alludes not only to the main objects in the
scene, and to how they relate to each other, but also to the context in which they are placed in the
image.

An intensive research effort has been carried out in the computer vision community to predict
where humans look in an image. This task, called saliency prediction, has been tackled in early
works by defining hand-crafted features that capture low-level cues such as color and texture
or higher-level concepts such as faces, people, and text [4, 19, 23]. Recently, with the advent of
deep neural networks and large annotated datasets, saliency prediction techniques have obtained
impressive results generating maps that are very close to the ones computed with eye-tracking
devices [8, 18, 20].

Despite the encouraging progress in image captioning and visual saliency, and their close con-
nections, these two fields of research have remained almost separate. In fact, only few attempts
have been recently presented in this direction [48, 52]. In particular, Sugano et al. [48] presented
a gaze-assisted attention mechanism for image caption based on human eye fixations (i.e., the
static states of gaze upon a specific location). Although this strategy confirms the importance of
using eye fixations, it requires gaze information from a human operator. Therefore, it cannot be
applied on general visual data archives, in which this information is missing. To overcome this
limit, Tavakoli et al. [52] presented an image captioning method based on saliency maps, which
can be automatically predicted from the input image.

In this article, we present an approach that incorporates saliency prediction to effectively en-
hance the quality of image description. We propose a generative Recurrent Neural Network archi-
tecture that can focus on different regions of the input image by means of an attentive mechanism.
This attentive behavior, differently from previous works [56], is conditioned by two different at-
tention paths: the former focused on salient spatial regions, predicted by a saliency model, and
the latter focused on contextual regions, which are computed as well from saliency maps. Exper-
imental results on five public image captioning datasets (SALICON, COCO, Flickr8k, Flickr30k,
and PASCAL-50S) demonstrate that our solution is able to properly exploit saliency cues. Also, we
show that this is done without losing the key properties of the generated captions, such as their
diversity and the vocabulary size. By visualizing the states of both attentive paths, we finally show
that the trained model has learned to attend to both salient and contextual regions during the gen-
eration of the caption, and that attention focuses produced by the network effectively correspond,
step by step, to generated words.

To sum up, our contributions are as follows. First, we show that saliency can enhance image
description, as it provides an indication of what is salient and what is context. Second, we propose
a model in which the classic machine attention approach is extended to incorporate two attentive
paths, one for salient regions and one for context. These two paths cooperate together during
the generation of the caption and generate better captions according to automatic metrics, without
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loss of diversity and size of the dictionary. Third, we qualitatively show that the trained model has
learned to attend to both salient and contextual regions in an appropriate way.

2 RELATED WORK

In this section, we review the literature related to saliency prediction and image captioning. We
also report some recent works that investigate the contribution of saliency for generating natural
language descriptions.

2.1 Visual Saliency Prediction

Saliency prediction has been extensively studied by the computer vision community and, in the
last few years, has achieved considerable improvement thanks to the large spread of deep neural
networks [8, 9, 18, 20, 28, 30, 39]. However, a very large variety of models had been proposed before
the advent of deep learning, and almost all of them have been inspired by the seminal work of Itti
and Koch [19], in which multiscale low-level features extracted from the input image were linearly
combined and then processed by a dynamic neural network with a winner-takes-all strategy. The
same idea of properly combining different low-level features was also explored by Harel et al. [15],
who defined Markov chains over various image maps and treated the equilibrium distribution over
map locations as an activation. In addition to the exploitation of low-level features, several saliency
models have also incorporated high-level concepts such as faces, people, and text [4, 23, 61]. In fact,
Judd et al. [23] highlighted that, when humans look at images, their gazes are attracted not only by
low-level cues typical of the bottom-up attention but also by top-down image semantics. To this
end, they proposed a model in which low- and medium-level features were effectively combined
and exploited face and people detectors to capture important high-level concepts. Nonetheless,
all these techniques have failed to effectively capture the wide variety of causes that contribute
to define the visual saliency on images, and, with the advent of deep learning, researchers have
developed data-driven architectures capable of overcoming many of the limitations of hand-crafted
models.

The first attempts of computing saliency maps through a neural network were lacking because
of the absence of sufficiently large training datasets [30, 35, 54]. Vig et al. [54] proposed the first
deep architecture for saliency, which was composed by only three convolutional layers. Afterward,
Kimmerer et al. [30, 31] based their models on two popular convolutional networks (AlexNet [27]
and VGG-19 [46]), obtaining adequate results, despite the fact that the network parameters were
not fine-tuned on a saliency dataset. Liu et al. [35] tried to overcome the absence of large-scale
datasets by training their model on image patches centered on fixation and nonfixation locations,
thus increasing the amount of training data.

With the arrival of the SALICON dataset [21], which is still the largest publicly available dataset
for saliency prediction, several deep architectures have moved beyond previous approaches, bring-
ing consistent performance advances. The starting point of all these architectures is a pretrained
Convolutional Neural Network (CNN), such as VGG-16 [46], GoogleNet [50], and ResNet [16], to
which different saliency-oriented components are added [8, 9], together with different training
strategies [9, 18, 20].

In particular, Huang et al. [18] compared three standard CNNs by applying them at two differ-
ent image scales. In addition, they were the first to train the network using a saliency evaluation
metric as a loss function. Jetley et al. [20] introduced a model that formulates a saliency map as
generalized Bernoulli distribution. Moreover, they trained their network by using different loss
functions that pair the softmax activation function with measures designed to compute distances
between probability distributions. Tavakoli et al. [51] investigated interimage similarities to es-
timate the saliency of a given image using an ensemble of extreme learners, each trained on an
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image similar to the input image. Kruthiventi et al. [28], instead, presented a unified framework
to predict both eye fixations and salient objects.

Another saliency prediction model was recently presented by Pan et al. [38], who, following
the large dissemination of Generative Adversarial Networks, trained their model by using adver-
sarial examples. In particular, their architecture is composed by two agents: a generator, which is
responsible for generating the saliency map of a given image, and a discriminator, which performs
a binary classification task between generated and real saliency maps. Liu et al. [34], instead, pro-
posed a model to learn long-term spatial interactions and scene contextual modulation to infer
image saliency and showed promising results, also thanks to the use of the powerful ResNet-50
architecture [16].

In contrast to all these works, we present two different deep saliency architectures. The first one,
called ML-Net [8], effectively combines features coming from different levels of a CNN and applies
a matrix of learned weights to the predicted saliency map, thus taking into account the center
bias present in human eye fixations. The second one, called SAM [9], incorporates neural atten-
tive mechanisms that focus on the most salient regions of the input image. The core component
of the proposed model is an Attentive Convolutional LSTM that iteratively refines the predicted
saliency map. Moreover, to tackle the human center bias, the network is able to learn multiple
Gaussian prior maps without predefined information. Since this model achieved state-of-the-art
performances, being at the top of different saliency prediction benchmarks, we use it in this work.

2.2 Image Captioning

Recently, the automatic description of images and video has been addressed by computer vision
researchers with recurrent neural networks, which, given a vectored description of the visual con-
tent, can naturally deal with sequences of words [3, 24, 55]. Before deep learning models, the gener-
ation of sentences was mainly tackled by identifying visual concepts, objects, and attributes, which
were then combined into sentences using predefined templates [29, 57, 58]. Another strategy was
that of posing the image captioning as a retrieval problem, where the closest annotated sentence
in the training set was transferred to a test image, or where training captions were split into parts
and then reassembled to form new sentences [11, 17, 37, 47]. Obviously, all these approaches lim-
ited the variety of possible outputs and could not satisfy the richness of natural language. Recent
captioning models, in fact, address the generation of sentences as a machine translation problem
in which a visual representation of the image coming from a convolutional network is translated
in a language counterpart through a recurrent neural network.

One of the first models based on this idea is that proposed by Karpathy et al. [24], in which
sentence snippets are aligned to the visual regions that they describe through a multimodal em-
bedding. After that, these correspondences are treated as training data for a multimodal recurrent
neural network that learns to generate the corresponding sentences. Vinyals et al. [55], instead,
developed an end-to-end model trained to maximize the likelihood of the target sentence given the
input image. Xu et al. [56] introduced an approach to image captioning that incorporates a form
of machine attention, by which a generative LSTM can focus on different regions of the image
while generating the corresponding caption. They proposed two different versions of their model:
the first one, called “Soft Attention,” is trained in a deterministic manner using standard back-
propagation techniques, while the second one, called “Hard Attention,” is trained by maximizing
a variational lower bound through the reinforcement learning paradigm.

Johnson et al. [22] addressed the task of dense captioning, which jointly localizes and describes
in natural language salient image regions. This task consists of generalizing the object detection
problem when the descriptions consist of a single word and the image captioning task when one
predicted region covers the full image. You et al. [59] proposed a semantic attention model in
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which, given an image, a convolutional neural network extracts top-down visual features and
at the same time detects visual concepts such as regions, objects, and attributes. The image fea-
tures and the extracted visual concepts are combined through a recurrent neural network that fi-
nally generates the image caption. Differently from previous works that aim at predicting a single
caption, Krause et al. [26] introduced the generation of entire paragraphs for describing images.
Finally, Shetty et al. [45] employed adversarial training to change the training objective of the
caption generator from reproducing ground-truth captions to generating a set of captions that is
indistinguishable from human-generated captions.

In this article, we are interested in demonstrating the importance of using saliency along with
contextual information during the generation of image descriptions. Our solution falls in the class
of neural attentive captioning architectures, and in the experimental section, we compare it against
a standard attentive model built upon the Soft Attention approach presented in [56].

2.3 Visual Saliency and Captioning

Only a few other previous works have investigated the contribution of human eye fixations to
generate image descriptions. The first work that has explored this idea was that proposed in [48],
which presented an extension of a neural attentive captioning architecture. In particular, the pro-
posed model incorporates human fixation points (obtained with eye-tracking devices) instead of
computed saliency maps to generate image captions. This kind of strategy mainly suffers from the
need of having both eye fixation and caption annotations. Currently, only the SALICON dataset
[21], being a subset of the Microsoft COCO dataset [33], is available with both human descriptions
and saliency maps.

Ramanishka et al. [41], instead, introduced an encoder-decoder captioning model in which spa-
tiotemporal heatmaps are produced for predicted captions and arbitrary query sentences without
explicit attention layers. They refer to these heatmaps as saliency maps, even though they are in-
ternal representations of the network, not related to human attention. Experiments showed that
the gain in performance with respect to a standard captioning attentive model is not consistent,
even though the computational overhead is lower.

A different approach, presented in [52], explores if image descriptions, by humans or models,
agree with saliency and if saliency can benefit image captioning. To this end, they proposed a
captioning model in which image features are boosted with the corresponding saliency map by
exploiting a moving sliding window and mean pooling as aggregation strategies. Comparisons
with respect to a no-saliency baseline did not show significant improvements (especially on the
Microsoft COCO dataset).

In this article, we instead aim at enhancing image captions by directly incorporating saliency
maps in a neural attentive captioning architecture. Differently from previous models that exploit
human fixation points, we obtain a more general architecture that can be potentially trained using
any image captioning dataset and can predict captions for any input image. In our model, the
machine attentive process is split in two different and unrelated paths, one for salient regions and
one for context. We demonstrate through extensive experiments that the incorporation of saliency
and context can enhance image captioning on different state-of-the-art datasets.

3 WHAT IS HIT BY SALIENCY?

Human gazes are attracted by both low-level cues, such as color, contrast, and texture, and high-
level concepts, such as faces and text [6, 23]. Current state-of-the-art saliency prediction methods,
thanks to the use of deep networks and large-scale datasets, are able to effectively incorporate
all these factors and predict saliency maps that are very close to those obtained from human eye
fixations [9]. In this section, we qualitatively investigate which parts of an image are actually hit or
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Fig. 1. Ground-truth semantic segmentation and saliency predictions from our model [9] on sample images
from Pascal-Context [36] (first row), Cityscapes [7] (second row), and LIP [13] (last row).

ignored by saliency models, by jointly analyzing saliency and semantic segmentation maps. This
will motivate the need for using saliency predictions as an additional conditioning for captioning
models.

To compute saliency maps, we employ the approach in [9], which has shown good results on
popular saliency benchmarks, such as the MIT Saliency [5] and the SALICON dataset [21], and
which also won the LSUN Challenge in 2017. It is worthwhile to mention, anyway, that the quali-
tative conclusions of this section can be applied to any state-of-the-art saliency model.

Since semantic segmentation algorithms are not always completely accurate, we perform the
analysis on three semantic segmentation datasets, in which regions have been segmented by hu-
man annotators: Pascal-Context [36], Cityscapes [7], and the Look into Person (LIP) [13] dataset.
While the first one contains natural images without a specific target, the other two are focused,
respectively, on urban streets and human body parts. In particular, the Pascal-Context provides
additional annotations for the Pascal VOC 2010 dataset [10], which contains 10,103 training and
validation images and 9,637 testing images. It goes beyond the original Pascal semantic segmenta-
tion task by providing annotations for the whole scene, and images are annotated by using more
than 400 different labels. The Cityscapes dataset, instead, is composed by a set of video sequences
recorded in street scenes from 50 different cities. It provides high-quality pixel-level annotations
for 5,000 frames and coarse annotations for 20,000 frames. The dataset is annotated with 30 street-
specific classes, such as car, road, traffic sign, and so forth. Finally, the LIP dataset is focused on the
semantic segmentation of people and provides more than 50,000 images annotated with 19 seman-
tic human part labels. Images contain person instances cropped from the Microsoft COCO dataset
[33] and split in training, validation, and testing sets with 30,462, 10,000, and 10,000 images, respec-
tively. For our analyses, we only consider train and validation images for the Pascal-Context and
LIP datasets, and the 5,000 pixel-level annotated frames for the Cityscapes dataset. Figure 1 shows,
for some sample images, the predicted saliency map and the corresponding semantic segmentation
on the three datasets.

We first investigate which are the most and the least salient classes for each dataset. Since there
are semantic classes with a low number of occurrences with respect to the total number of images,
we only consider relevant semantic classes (i.e., classes with at least N occurrences). Due to the
different dataset sizes, we set N to 500 for the Pascal-Context and LIP datasets, and to 200 for
the Cityscapes dataset. To collect the number of times that the predicted saliency hits a semantic
class, we binarize each map by thresholding the values of its pixels. A low threshold value leads to
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Fig. 2. Most salient classes on Pascal-Context, Cityscapes, and LIP datasets.
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Fig. 3. Least salient classes on Pascal-Context, Cityscapes, and LIP datasets.

a binarized map with dilated salient regions, while a high threshold creates small salient regions
around the fixation points. For this reason, we use two different threshold values to analyze the
most and the least salient classes. We choose a threshold near 0 to find the least salient classes for
each dataset and a value near 255 to find instead the most salient ones.

Figures 2 and 3 show the most and the least salient classes in terms of the percentage of times
that saliency hits a region belonging to a class. As can be seen, there are different distributions
depending on the considered dataset. For example, for Pascal-Context, the most salient classes are
animals (such as cats, dogs, and birds), people, and vehicles (such as airplanes and cars), while
the least salient ones result to be ceiling, floor, and light. As for the Cityscapes dataset, cars are
absolutely the most salient class, with a rate 70% of times in which it is hit by saliency. All other
classes, instead, do not reach a 40% rate. On the LIP dataset, the most salient classes are all human
body parts in the upper body, while the least salient ones are all in the lower body. As expected,
people faces are those most hit by saliency, with an absolute number of occurrences near 90%. It
can be observed as a general pattern that the most important or visible objects in the scene are hit
by saliency, while objects in the background, and the context itself of the image, are usually ignored.
This leads to the hypothesis that both salient and nonsalient regions are important to generate the
description of an image, given that we generally want the context to be included in the caption,
and that the distinction between salient regions and context, given by a saliency prediction model,
can improve captioning results.

We also investigate the existence of a relation between the size of an object and its saliency
values. In Figure 4, we plot the joint distribution of object sizes and saliency values on the three
datasets, where the size of an object is simply computed as the number of its pixels normalized
by the size of the image. As can be seen, most of the low-saliency instances are small; however,
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Fig. 4. Distribution of object sizes and saliency values (best seen in color).
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Fig. 5. Overview of the proposed model. Two different attention paths are built for salient regions and con-

textual regions, to help the model build captions that describe both components (best seen in color).

high-saliency values concentrate on small objects as well as on large ones. In summary, there is
not always a proportionality between the size of an object and its saliency, so the importance of an
object cannot be assessed by simply looking at its size. In the image captioning scenario that we
want to tackle, larger objects correspond to larger activations in the last layers of a convolutional
architecture, while smaller objects correspond to smaller activations. Since salient and nonsalient
regions can have comparable activations, the supervision given by a saliency prediction model on
whether a pixel belongs or not to a salient region can be beneficial during the generation of the
caption.

4 SALIENCY AND CONTEXT-AWARE ATTENTION

Following the qualitative findings of the previous section, we develop a model in which saliency is
exploited to enhance image captioning. Here, a generative recurrent neural network is conditioned,
step by step, on salient spatial regions, predicted by a saliency model, and on contextual features,
which account for the role of nonsalient regions in the generation of the caption. In the following,
we describe the overall model. An overview is presented in Figure 5.

Each input image I is first encoded through a Fully Convolutional Network, which provides
a stack of high-level features on a spatial grid {aj,a,,...,ar}, each corresponding to a spatial
location of the image. At the same time, we extract a saliency map for the input image using the
model in [9] and downscale it to fit the spatial size of the convolutional features to obtain a spatial
grid {s1, Sz, . .., sy} of salient regions, where s; € [0, 1]. Correspondingly, we also define a spatial
grid of contextual regions, {z1, z2, . ..,z }, where z; = 1 —s;. Under the model, visual features at
different locations will be selected or inhibited according to their saliency value.

The generation of the caption is carried out word by word by feeding and sampling words from
an LSTM layer, which, at every timestep, is conditioned on features extracted from the input image
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and on the saliency map. Formally, the behavior of the generative LSTM is driven by the following
equations:

ip = o(Wyi¥y + W,iw; + Wyih_y +b;) (1)
fi = oc(WopVs + Wy pw; + Wyrh; 1 +by) (2)
oy = c(WyoVy + Wyyowy + Wyoh,—1 +by) (3)
g = d(WogVr + Waygw; + Wigh, 1 +by) (4)
c;=f,0c 1 +i; 08 5)
h; = 0; © ¢(cy), (6)

where, at each timestep, ¥, denotes the visual features extracted from I by considering the map
of salient regions {s;}; and those of contextual regions {z;};. w; is the input word, and h and ¢
are, respectively, the internal state and the memory cell of the LSTM. © denotes the element-wise
Hadamard product, o is the sigmoid function, ¢ is the hyperbolic tangent tanh, W, are learned
weight matrices, and b, are learned biases vectors.

To provide the generative network with visual features, we draw inspiration from the machine
attention literature [56] and compute the fixed-length feature vector ¥, as a linear combination of

spatial features {aj, ay, ..., ar} with time-varying weights @;;, normalized over the spatial extent
via a softmax operator:
L
V= aay, (7)
i=1
exp (er;)
i = L (8)

For ©xXp (erk)

At each timestep, the attention mechanism selects a region of the image, based on the previous
LSTM state, and feeds it to the LSTM, so that the generation of a word is conditioned on that
specific region, instead of being driven by the entire image.

Ideally, we want weights a;; to be aware of the saliency and contextual value of location a; and
to be conditioned on the current status of the LSTM, which can be well encoded by its internal
state h;. In this way, the generative network can focus on different locations of the input image
according to their belonging to a salient or contextual region, and to the current generation state.
Of course, simply multiplying attention weights with saliency values would result in a loss of
context, which is fundamental for caption generation. We instead split attention weights e;; into
two contributions, one for saliency and one for context regions, and employ two different fully
connected networks to learn the two contributions (Figure 5). Conceptually, this is equivalent to
building two separate attention paths, one for salient regions and one for contextual regions, which
are merged to produce the final attention. Overall, the model obeys the following equation:

_ sal ctx
e =Si-ef +zi-e;”, 9)

lflf‘l ff * are, respectively, the attention weights for salient and context regions. Atten-

tion weights for saliency and context are computed as follows:

where e% and e

T

e??l = Ue,sal ' d)(Wae,sal -a; + Whe,sal ' ht—l) (10)
T

e?,'tx = Ue ctx * ¢(Wae,ctx -a; + Whe,cz‘x 'ht—l)- (11)
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Notice that our model learns different weights for saliency and contextual regions and combines
them into a final attentive map in which the contributions of salient and nonsalient regions are
merged together. Similarly to the classical Soft Attention approach [56], the proposed generative
LSTM can focus on every region of the image, but the attentive process is aware of the saliency
of each location, so that the focus on salient and contextual regions is driven by the output of the
saliency predictor.

4.1 Sentence Generation

Words are encoded with one-hot vectors having size equal to that of the vocabulary and are then
projected into an embedding space via a learned linear transformation. Because sentences have
different lengths, they are also marked with special begin-of-string and end-of-string tokens, to
keep the model aware of the beginning and end of a particular sentence.

Given an image and sentence (yo,y1,...,yT), encoded with one-hot vectors, the generative
LSTM is conditioned step by step on the first ¢ words of the caption and is trained to produce the
next word of the caption. The objective function we optimize is the log-likelihood of correct words
over the sequence

T
m“elelogPr(ytlfrt,yt_l,yt_z,...,yo), (12)
t=
where w are all the parameters of the model. The probability of a word is modeled via a softmax
layer applied on the output of the LSTM. To reduce the dimensionality, a linear embedding trans-
formation is used to project one-hot word vectors into the input space of the LSTM and, vice versa,
to project the output of the LSTM to the dictionary space:

Pr(y: [V, ye1.Ye-2: - - - yo) o exp (y; Wphy), (13)

where W, is a matrix for transforming the LSTM output space to the word space, and h; is the
output of the LSTM.

At test time, the LSTM is given a begin-of-string tag as input for the first timestep, and then the
most probable word according to the predicted distribution is sampled and given as input for the
next timestep, until an end-of-string tag is predicted.

5 EXPERIMENTAL EVALUATION

In this section, we perform qualitative and quantitative experiments to validate the effectiveness
of the proposed model with respect to different baselines and other saliency-boosted captioning
methods. First, we describe datasets and metrics used to evaluate our solution and provide imple-
mentation details.

5.1 Datasets and Metrics

To validate the effectiveness of the proposed Saliency and Context-aware Attention, we perform
experiments on five popular image captioning datasets: SALICON [21], Microsoft COCO [33],
Flickr8k [17], Flickr30k [60], and PASCAL-50S [53].

Microsoft COCO is composed by more than 120,000 images divided into training and valida-
tion sets, where each of them is provided with at least five sentences generated by using Amazon
Mechanical Turk. SALICON is a subset of this one, created for the visual saliency prediction task.
Since its images are from the Microsoft COCO dataset, at least five captions for each image are
available. Overall, it contains 10,000 training images, 5,000 validation images, and 5,000 testing im-
ages where eye fixations for each image are simulated with mouse movements. In our experiments,
we only use train and validation sets for both datasets. The Flickr8k and the Flickr30k datasets are
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composed by 8,000 and 30,000 images, respectively. Both of them come with five annotated sen-
tences for each image. In our experiments, we randomly choose 1,000 validation images and 1,000
test images for each of these two datasets. The PASCAL-50S dataset provides additional annota-
tions for the UIUC PASCAL sentences [42]. It is composed of 1,000 images from the PASCAL-VOC
dataset, each of them annotated with 50 human-written sentences, instead of five as in the origi-
nal dataset. Due to the limited number of samples and for a fair comparison with other captioning
methods, we first pretrain the model on the Microsoft COCO dataset, and then we test it on the
images of this dataset without a specific fine-tuning.

For evaluation, we employ four automatic metrics that are usually employed in image cap-
tioning: BLEU [40], ROUGE, [32], METEOR [2], and CIDEr [53]. BLEU is a modified form of
precision between n-grams to compare a candidate translation against multiple reference trans-
lations. We evaluate our predictions with BLEU using mono-grams, bi-grams, three-grams, and
four-grams. ROUGE| computes an F-measure considering the longest co-occurring in sequence
n-grams. METEOR, instead, is based on the harmonic mean of unigram precision and recall, with
recall weighted higher than precision. It also has several features that are not found in other met-
rics, such as stemming and synonymy matching, along with the standard exact word matching.
CIDEr, finally, computes the average cosine similarity between n-grams found in the generated
caption and those found in reference sentences, weighting them using TF-IDF. To ensure a fair
evaluation, we use the Microsoft COCO evaluation toolkit! to compute all scores.

5.2 Implementation Details

Each image is encoded through a convolutional network, which computes a stack of high-level fea-
tures. We employ the popular ResNet-50 [16], trained over the ImageNet dataset [44], to compute
the feature maps over the input image. In particular, the ResNet-50 is composed by 49 convolu-
tional layers, divided into five convolutional blocks, and one fully connected layer. Since we want
to maintain the spatial dimensions, we extract the feature maps from the last convolutional layer
and ignore the fully connected layer. The output of the ResNet model is a tensor with 2,048 chan-
nels. To limit the number of feature maps and the number of learned parameters, we fed this tensor
into another convolutional layer with 512 filters and a kernel size of 1, followed by a ReLU acti-
vation function. Differently from the weights of the ResNet-50, which are kept fixed, the weights
of this last convolutional layer are initialized according to [12] and fine-tuned over the considered
datasets. In the LSTM, following the initialization proposed in [1], the weight matrices applied to
the inputs are initialized by sampling each element from the Gaussian distribution of 0 mean and
0.012 variance, while the weight matrices applied to the internal states are initialized by using the
orthogonal initialization. The vectors v, so; and v, ¢;x as well as all bias vectors b, are instead
initialized to zero.

To predict the saliency map for each input image, we exploit our Saliency Attentive Model (SAM)
[9], which is able to predict accurate saliency maps according to different saliency benchmarks.
We note, however, that we do not expect a significant performance variation when using other
state-of-the-art saliency methods.

As mentioned, we perform experiments over five different datasets. For the SALICON dataset,
since its images all have the same size of 480 X 640, we keep the original size of these images, thus
obtaining L = 15 X 20 = 300. For all other datasets, which are composed of images with differ-
ent sizes, we set the input size to 480 X 480, obtaining L = 15 X 15 = 225. Since saliency maps are
exploited inside the proposed saliency-context attention model, we resize the SALICON saliency
maps to have a size of 15 X 20, while for all other datasets, we resize them to 15 X 15.

Ihttps://github.com/tylin/coco-caption.
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All experiments are performed by using the Adam optimizer [25] with Nestorov momentum
[49] using an initial learning rate of 0.001 and batch size of 64. The hidden state dimension is set
to 1, 024 while the embedding size is set to 512. For all datasets, we choose a vocabulary size equal
to the number of words that appear at least 5 times in training and validation captions.

5.3 Quantitative Results and Comparisons with Baselines

To assess the performance of our method and to investigate the hypotheses behind it, we first
compare with the classic Soft Attention approach, and we then build three baselines in which
saliency is used to condition the generative process.

Soft Attention [56]: The visual input to the LSTM is computed via the Soft Attention mech-
anism to attend to different locations of the image, without considering salient and nonsalient
regions. A single feed-forward network is in charge of producing attention values, which can be
obtained by replacing Equation (9) with

eri = v - p(Wae - a; + Wi - hyoy). (14)

This approach is equivalent to the one proposed in [56], although some implementation details
are different. In order to achieve a fair evaluation, we use activations from the ResNet-50 model
instead of the VGG-19, and we do not include the doubly stochastic regularization trick. For this
reason, the numerical results that we report are not directly comparable with those in the original
paper (ours are in general higher than the original ones).

Saliency pooling: Visual features from the CNN are multiplied at each location by the cor-
responding saliency value and then summed, without any attention mechanism. In this case, the
visual input of the LSTM is not time dependent, and salient regions are given more focus than
nonsalient ones. Comparing with Equation (7), it can be seen as a variation of the Soft Attention
in which the network always focuses on salient regions:

L
Vi=¥= ) s (15)
i=1

Attention on saliency: This is an extension of the Soft Attention approach in which saliency
is used to modulate attention values at each location. The attention mechanism, therefore, is con-
ditioned to attend to salient regions with higher probability and to ignore nonsalient regions:

eri =i U - p(Wae - a; + Whe - hyoy). (16)

Attention on saliency and context (with weight sharing): The attention mechanism is
aware of salient and context regions, but weights used to compute the attentive scores of salient
and context are shared, excluding the UZ vectors. Notice that, if those were shared too, this baseline
would be equivalent to the Soft Attention one:

e =si-eff + (1-s;) - ef]” (17)
eiqu = z)eT,sal ' ¢(Wae ca; + Whe 'ht—l) (18)
el = UeT,ctx “p(Wae - a; + Wpe - hyq). (19)

It is straightforward also to notice that our proposed approach is equivalent to the last baseline,
without weight sharing.

In Table 1, we first compare the performance of our method with respect to the Soft Attention
approach, to assess the superior performance of the proposal with respect to the published state
of the art. We report results on all the datasets, both on validation and test sets, with respect to
all the automatic metrics described in Section 5.1. As can be seen, the proposed approach always
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Table 1. Image Captioning Results

Dataset Model B@1 B@2 B@3 B@4 METEOR ROUGE; CIDEr
SALICON Soft Attention 69.0 509 36.1 254 22.5 49.9 70.8
Saliency+Context Attention | 69.2 51.4 37.2 26.9 22.9 50.4 73.3

COCO Soft Attention 70.6 53.0 383 275 243 51.8 87.9
Saliency+Context Attention | 70.8 53.6 39.1 28.4 24.8 52.1 89.8

Flickr8k Soft Attention 59.9 418 279 18.2 19.8 45.0 47.7
(Validation) | Saliency+Context Attention | 62.8 44.5 30.2 19.9 20.3 46.5 50.1
Flickr8k Soft Attention 61.0 432 29.6 20.1 20.8 46.5 53.2
(Test) Saliency+Context Attention | 63.5 45.6 31.5 21.2 21.1 47.5 54.1
Flickr30k Soft Attention 61.9 433 29.7 20.2 19.9 44.8 43.2
(Validation) | Saliency+Context Attention | 61.3 43.3 30.1 20.9 20.2 45.0 44.5
Flickr30k Soft Attention 61.9 434 299 205 19.8 44.5 44.2
(Test) Saliency+Context Attention | 61.5 43.8 30.5 21.3 20.0 45.2 46.4
PASCAL-50S Soft Attention 82.4 70.0 57.0 45.1 32.8 65.9 70.4
Saliency+Context Attention | 82.4 70.2 57.5 45.7 329 66.3 70.7

The conditioning of saliency and context (Saliency+Context Attention)enhances the generation of the caption with
respect to the traditional machine attention mechanism. Soft Attention here indicates our reimplementation of [56],
using the same visual features of our model.

overcomes by a significant margin the Soft Attention approach, thus experimentally confirming
the benefit of having two separate attention paths, one for salient and one for nonsalient regions,
and the role of saliency as a conditioning for captioning. In particular, on the METEOR metric, the
relative improvement ranges from 32'39£382'8 = 0.30% on the PASCAL-50S to %‘?'8 = 2.53% of the
Flickr8k validation set.

In Table 2, instead, we compare our approach with the three baselines that incorporate saliency.
First, it can be observed that the Saliency Pooling baseline usually performs worse than the Soft
Attention, thus demonstrating that always attending to salient locations is not sufficient to achieve
good captioning results. When plugging in attention, as in the Saliency Attention baseline, numer-
ical results are a bit higher, thanks to a time-dependent attention, but still far from the performance
achieved by the complete model. It can also be noticed that, even though this baseline does not
take into account the context, it sometimes achieves better results than the Soft Attention model
(such as in the case of SALICON, with respect to the METEOR metric). Finally, we notice that the
baseline with attention on saliency and context, and with weight sharing, is better than Saliency
Attention, further confirming the benefit of including the context. Having two completely sepa-
rated attention paths, such as in our model, is important anyway, as demonstrated by the numerical
results of this last baseline with respect to those of our method.

5.4 Comparisons with Other Saliency-Boosted Captioning Models

We also compare to existing captioning models that incorporate saliency during the generation
of image descriptions. In particular, we compare to the model proposed in [48], which exploited
human fixation points; to the work by Tavakoli et al. [52], which reports experiments on Microsoft
COCO and on PASCAL-50S; and to the proposal by Ramanishka et al. [41], which used convolu-
tional activations as a proxy for saliency.
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Table 2. Comparison with Image Captioning with Saliency Baselines

Dataset Model B@1 B@2 B@3 B@4 METEOR ROUGEp CIDEr
Saliency Pooling 66.1 47.8 33.7 24.0 21.1 47.9 62.4

Attention on Saliency 68.8 513 370 265 22.7 50.1 71.3

SALICON

Saliency+Cont. Att. (Weight Sh.) | 68.9 51.3 36.8 26.3 22.6 50.2 71.4
Saliency+Context Attention 69.2 514 37.2 269 22.9 504 73.3

Saliency Pooling 68.6 50.9 363 25.8 23.3 50.2 81.4

Attention on Saliency 704 53.2 38.6 27.6 24.1 51.6 86.6

COCO

Saliency+Cont. Att. (Weight Sh.) | 70.4 53.1 38.8 28.2 24.7 52.1 89.4
Saliency+Context Attention 70.8 53.6 39.1 284 24.8 52.1 89.8
Saliency Pooling 56.1 37.7 243 15.6 18.3 42.8 37.0
Flickr8k Attention on Saliency 58.7 404 268 17.6 19.7 45.1 44.7
(Validation) | Saliency+Cont. Att. (Weight Sh.) | 62.0 43.9 29.6 19.8 20.2 45.7 50.2
Saliency+Context Attention 62.8 44.5 30.2 19.9 20.3 46.5 50.1
Saliency Pooling 56.5 37.8 24.6 16.2 18.5 429 37.7
Flickr8k Attention on Saliency 59.6 422 287 19.5 20.7 46.1 50.1
(Test) Saliency+Cont. Att. (Weight Sh.) | 62.4 44.2 299 19.7 21.1 46.7 51.7
Saliency+Context Attention 63.5 45.6 31.5 21.2 21.1 47.5 54.1
Saliency Pooling 58.7 405 271 184 18.3 43.0 34.2
Flickr30k Attention on Saliency 63.0 44.5 30.8 213 19.4 44.7 43.5
(Validation) | Saliency+Cont. Att. (Weight Sh.)) | 62.0 43.8 30.0 20.5 19.7 44.6 43.3
Saliency+Context Attention 613 433 30.1 209 20.2 45.0 44.5
Saliency Pooling 58.3 40.6 275 18.6 18.7 43.0 36.2
Flickr30k Attention on Saliency 62.5 44.2 30.5 210 19.6 44.9 45.0
(Test) Saliency+Cont. Att. (Weight Sh.)) | 61.7 43.7 30.0 204 19.6 44.2 43.1
Saliency+Context Attention 61.5 438 30.5 21.3 20.0 45.2 46.4

Saliency Pooling 79.9 67.1 53.6 4138 31.4 64.1 65.3
Attention on Saliency 82.4 70.3 574 455 32.7 66.3 70.2

PASCAL-50S
Saliency+Cont. Att. (Weight Sh.) | 82.0 69.7 56.4 44.2 32.7 65.2 70.0

Saliency+Context Attention 82.4 70.2 57.5 45.7 32.9 66.3 70.7

While the use of machine attention strategies is beneficial (see Saliency Poolingvs.Attention on Saliency), saliency
and context are both important for captioning. The use of different attention paths for saliency and context also enhances
the performance (see Saliency+Context Attention (With Weight Sharing) vs. Saliency+Context Attention).

Table 3 shows the results on the three considered datasets in terms of BLEU@4, METEOR,
ROUGE], and CIDEr. We compare our solutions to both versions of the model presented in [52].
The GBVS version exploits saliency maps calculated by using a traditional bottom-up model
[15], while the other one includes saliency maps extracted from a deep convolutional network
[51].

Overall, results show that the proposed Saliency and Context Attention model can overcome
the other methods on different metrics, thus confirming the strategy of including two attention
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Table 3. Comparison with Existing Saliency-Boosted Captioning Models

Dataset Model B@4 METEOR ROUGEp; CIDEr
Sugano et al. [48] 24.5 21.9 524 63.8
SALICON

Ours 26.9 229 50.4 73.3

Tavakoli et al. [52] (GBVS) | 28.7 23.5 51.2 84.1

COCO Tavakoli et al. [52] (SEEL) | 28.3 23.5 50.8 83.6
Ours 28.4 24.8 52.1 89.8

Ramanishka et al. [41] - 18.3 - -
Flickr30k (Test)

Ours 21.3 20.0 45.2 46.4

Tavakoli et al. [52] (GBVS) | 40.0 30.2 63.5 61.5

PASCAL-50S | Tavakoli et al. [52] iSEEL) | 39.6 30.2 63.2 61.4
Ours 45.7 32.9 66.3 70.7

onsa®b

NoNsR®O

s &
LI SR R ° 8 *\&‘_ &SRS S S &
& &8 S AR A

—Saliency —Context —Saliency —Context

onso®b

Lonao®ns

2 KR @k.‘&(\% &

S R & P
& @& S
(40

© f

—Saliency —Context

onvsa®B

Abonpro®d

S <

> B R S N R o
S 2 S &S &
N Q N

< N

—Saliency —Context

10 10

8 8

6

N —~ 6

2 4

0 2

2 0
PN R S E S 2% S S 8 & L & 2 D
O @ & & B R o ¢ &P S o8
& FOE @i‘b & NI N

—Saliency —Context —Saliency —Context

Fig. 6. Examples of attention weight changes between saliency and context along with the generation of
captions (best seen in color). Images are from the Microsoft COCO dataset [33].

paths. In particular, on the METEOR metric, we obtain a relative improvement of 4.57% on the
SALICON dataset, 5.53% on the Microsoft COCO, and 8.94% on the PASCAL-50S.

5.5 Analysis of Generated Captions

We further collect statistics on captions generated by our method and by the Soft Attention
model, to quantitatively assess the quality of generated captions. First, we define three metrics
that evaluate the vocabulary size and the difference between the corpus of captions generated by
the two models and the ground truth:
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Table 4. Statistics on Vocabulary Size and Diversity of the Generated Captions

Dataset Model Div-1 Div-2  Vocabulary % Novel Sent. % Different Sent.

Soft Attention 0.0136 0.0498 658 95.22%

SALICON 95.34%
Saliency+Context Attention | 0.0125 0.0549 614 93.12%
Soft Attention 0.0038 0.0187 1490 81.81%

COCO 93.80%
Saliency+Context Attention | 0.0037 0.0182 1444 78.02%

Flickr8k Soft Attention 0.0367 0.1026 389 98.30% 97.90%

(Validation) | Saliency+Context Attention | 0.0400 0.1094 411 99.30% o

Flickr8k Soft Attention 0.0385 0.1041 404 98.50% 97.60%

(Test) Saliency+Context Attention | 0.0419 0.1119 423 99.60% o

Flickr30k Soft Attention 0.0577 0.1445 699 99.90% 98.62%

(Validation) | Saliency+Context Attention | 0.0565 0.1439 715 99.61% e

Flickr30k Soft Attention 0.0580 0.1508 682 99.90% 98.20%

(Test) Saliency+Context Attention | 0.0585 0.1549 711 99.70% -
Soft Attention 0.0475 0.1379 465 97.10%

PASCAL-50S 94.80%
Saliency+Context Attention | 0.0468 0.1359 456 96.40%

Including saliency and context in two different machine attention paths (Saliency+Context Attention) produces
different captions with respect to the traditional machine attention approach (Soft Attention), while preserving
almost the same diversity statistics.

e Vocabulary size: number of unique words generated in all captions

e Percentage of novel sentences: percentage of generated sentences that are not seen in the
training set

e Percentage of different sentences: percentage of images that are described differently by the
two models

Then, we measure the diversity of the set of captions generated by each of the two models, via the
following two metrics [45]:

e Div-1: ratio of number of unique unigrams in a set of captions to the number of words in
the same set. Higher is more diverse.

e Div-2: ratio of number of unique bigrams in a set of captions to the number of words in the
same set. Higher is more diverse.

In Table 4, we compare the set of captions generated by our model with that generated by the
Soft Attention baseline. Although our model features a slight reduction of the vocabulary size on
SALICON, COCO, and PASCAL-50S, captions generated by the two models are very often different,
thus confirming that the two approaches have learned different captioning models. Moreover, the
diversity and the number of novel sentences of the Soft Attention approach are entirely preserved.

5.6 Analysis of Attentive States

The selection of a location in our model is based on the competition between the saliency attentive
path and the context attentive path (see Equation (9)). To investigate how the two paths interact
and contribute to the generation of a word, in Figure 6 we report, for several images from the
Microsoft COCO dataset, the changes in attention weights between the two paths. Specifically, for
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Ground truth: A group of people standing
around giraffes.

Saliency+Context Attention: A group of
people standing around a giraffe.

Without saliency: A group of people
standing around a stage with a group of
people.

Ground truth: A women who is jumping
on the bed.

Saliency+Context Attention: A woman is
jumping up in a bed.

Without saliency: A woman is playing
with a remote control.

Ground truth: A teddy bear holding a cell
phone in front of a window with a view of
the city.

Saliency+Context Attention: A teddy
bear sitting on a chair next to a window.
Without saliency: A brown dog is sitting
on a laptop keyboard.

T T —

Ground-truth: A person on a motorcycle
riding on a mountain.

Saliency+Context Attention: A person
riding a motorcycle on a road.

‘Without saliency: A man on a bike with a

Ground truth: A group of people at the
park with some flying kites.
Saliency+Context Attention: A group of
people flying kites in a park.

Without saliency: A group of people
standing on top of a lush green field.

n

Ground truth: A man takes a profile
picture of himself in a bathroom mirror.
Saliency+Context Attention: A person
taking a picture of himself in a bathroom.
Without saliency: A bathroom with a sink
and a sink.

Ground truth: A group of people riding
down a snowcovered slope.
Saliency+Context Attention: A group of
people riding skis down a snowcovered
slope.

Without saliency: A group of people on
skis in the snow.

Bt

-

Ground-truth: A car is parked next to a
parking meter.

Saliency+Context Attention: A car is
parked in the street next to a parking meter.
Without saliency: A car parked next to a

1
i =
} N

Ground truth: A man is looking into a
home refrigerator.

Saliency+Context Attention: A man is
looking inside of a refrigerator.

Without saliency: A man is making a
refrigerator in a kitchen.

Ground truth: A double-decker bus driving
down a street.

Saliency+Context Attention: A double-
decker bus driving down a street.

Without saliency: A bus is parked on the
side of the road.

P b

Ground trut

h: A laptop computer sitting

on top of a table.

Saliency+Context Attention: A laptop
computer sitting on top of a desk.

Without saliency: A desk with a laptop
computer and a laptop.

Ground-truth: A plate of food and a cup of
coffee.

Saliency+Context Attention: A plate of
food with a sandwich and a cup of coffee.
Without saliency: A table with a variety of

bike in the background. white fire hydrant. food on it.

Fig. 7. Example results on the Microsoft COCO dataset [33].

each image, we report the average of eifl and e{!* values at each timestep, along with a visualiza-

tion of its saliency map. It is interesting to see how the model was able to correctly exploit the two
attention paths for generating different parts of the caption, and how generated words correspond
in most cases to the attended regions. For example, in the case of the first image (“a group of zebras
graze in a grassy field”), the saliency attentive path is more active than the context path during
the generation of words corresponding to the “group of zebras,” which is captured by saliency. In-
stead, when the model has to describe the context (“in a grassy field”), the saliency attentive path
has lower weights with respect to the context attentive path. The same can be observed for all the
reported images; it can also be noticed that generated captions tend to describe both salient objects
and the context, and that usually the salient part, which is also the most important, is described
before the context.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 2, Article 48. Publication date: April 2018.



48:18 M. Cornia et al.

Ground truth: The yellow truck passes by Ground truth: A cityscape that is seen Ground truth: A large tree situated next to

two people on motorcycles from opposing from the other side of the river. a large body of water.

directions. Saliency+Context Attention: A large Saliency+Context Attention: A person is
Saliency+Context Attention: A person on building with a large clock tower in the sitting under a red umbrella.

a motorbike in a city. background. Without saliency: A street sign with a
Without saliency: A man in a red shirt on Without saliency: A large building with a large tree in the middle.

a horse. large clock in the water.

Ground truth: A busted fire hydrant Ground truth: A small airplane flying over Ground truth: The view of city buildings
spewing water out onto a street. a field filled with people. is seen from the river.

Saliency+Context Attention: A person Saliency+Context Attention: A group of Saliency+Context Attention: A large
standing in front of a large cruise ship. people walking around a large jet. clock tower towering over the water.
Without saliency: A man is standingona Without saliency: A large group of people Without saliency: A large building with a
dock near a large truck. standing on top of a lush green field. large clock tower in the water.

Fig. 8. Failure cases on sample images of the Microsoft COCO dataset [33].

5.7 Qualitative Results

Finally, in Figure 7, we report some sample results on images taken from the Microsoft COCO
dataset. For each image, we report the corresponding saliency map and captions generated by our
model and by the Soft Attention baseline compared to the ground truth. It can be seen that, on
average, captions generated by our model are more consistent with the corresponding image and
the human-generated caption, and that, as also observed in the previous section, salient parts are
described as well as the context. The incorporation of saliency and context also help the model to
avoid failures due to hallucination, such as in the case of the fourth image, in which the Soft Atten-
tion model predicts a remote control that is not depicted in the image. Other failure cases, which
are avoided by our model, include the repetition of words (as in the fifth image) and the failure to
describe the context (first image). We speculate that the presence of two separate attention paths,
which the model has learned to attend to during the generation of the caption, helps to avoid such
failures more effectively than the classic machine attention approach.

For completeness, some failure cases of the proposed model are reported in Figure 8. The major-
ity of failures occur when the salient regions of the image are not described in the corresponding
ground-truth caption (as, for example, in the first row), thus causing a performance loss. Some
problems arise also in the presence of complex scenes (such as in the fourth image). However, we
observe that the Soft Attention baseline fails as well to predict correct and complete captions in
these cases.

6 CONCLUSION

We proposed a novel image captioning architecture that extends the machine attention paradigm
by creating two attentive paths conditioned on the output of a saliency prediction model. The
first one is focused on salient regions, and the second on contextual regions: the overall model
exploits the two paths during the generation of the caption by giving more importance to salient
or contextual regions as needed. The role of saliency with respect to context has been investigated
by collecting statistics on semantic segmentation datasets, while the captioning model has been
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evaluated on large-scale captioning datasets using standard automatic metrics and by evaluating
the diversity and the dictionary size of the generated corpora. Finally, the activations of the two
attentive paths have been investigated, and we have shown that they correspond, word by word, to
afocus on salient objects or on the context in the generated caption; moreover, we qualitatively as-
sessed the superiority of the captions generated by our method with respect to those generated by
the Soft Attention approach. Although our focus has been that of demonstrating the effectiveness
of saliency on captioning, rather than that of beating captioning approaches that rely on different
cues, we point out that our method can be easily incorporated into those architectures.
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