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10.1 INTRODUCTION

Humans are inherently good at understanding and categorizing social for-
mations. A clear signal of this cue is that we respond to different social
situations with different behaviors: while we accept to stand in close prox-
imity to strangers when we attend some kind of public event, we would
feel uncomfortable in having people we do not know close to us when we
take a coffee. This processing happens so naturally in our brains that we
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rarely stop wondering who is interacting with whom or which people form
a group and which do not. Nevertheless, understanding social relationships
and social groups is a complex task which can hardly be transferred to a
fully automatic system.

Initial work has started to address the task of social interaction analysis
from the videosurveillance perspective [24,33]. Fixed cameras, however,
lack the ability to immerse in the social environment, effectively losing
an extremely significant portion of the information about what is happen-
ing. Wearable cameras, on the contrary, put the research on this matter in a
new and unique perspective. A video taken from the egocentric perspective
provides a more meaningful insight in the social interaction, given that the
recording is performed by a member of the group itself with a clear view of
the social formation.

This privileged perspective lets researchers use wearable cameras for acquir-
ing and processing the same visual stimuli that humans acquire and process.
In this regard, first-person vision (or egocentric vision) assumes the broader
meaning of understanding what a person sees calling for similar learning,
perception and reasoning paradigms of humans. While this approach carries
exceptional benefits, it also features several problems: the camera continu-
ously follows the wearer’s movements, resulting in severe camera motion,
steep lighting transitions, background clutter and severe occlusions. These
situations are required to be properly tackled in order to process the video
automatically and extract higher level information.

There are significant cues which can be captured by an egocentric camera
and which can help the automatic understanding of the social formation the
user is involved in. First, when we are interacting with each other we natu-
rally tend to place ourselves in determined positions to avoid occlusions in
our group, stand close to the ones we interact with and orientate our head so
as to place the focus on the subjects of our interest. Moreover, when engaged
in a conversation we naturally tend to look at the people we are interacting
with, and to ignore others, so eye fixations are an important cue to determine
the strength of a social relationship between people. Distances between in-
dividuals and mutual orientations also assume clear significance and must
be interpreted according to the situation. F-formation theory [18] describes
patterns that humans naturally tend to create when interacting with each
other and can be used to understand whether an ensemble of people forms
a group or not, based on the mutual distances and orientations of the sub-
jects in the scene. F-formations have recently been successfully applied in
videosurveillance, with fixed cameras, in studies aimed at social interaction
analysis showing great promise [9,14].
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■ FIGURE 10.1 An example of our method output.
In the left image: different colors in bounding box
indicate their belonging to different groups. The red
dot represents the first person wearing the camera. In
the right image: the bird’s eye view model where each
triangle represents a person and links among them
represent the groups.

Following these cues, we adopt distance and orientation information and use
them to build a pairwise feature vector capable of describing how two peo-
ple relate. Since orientations and distances differ as regards importance and
meaning in different situations, we use a supervised correlation clustering
framework to learn about social groups. Once social groups are detected, we
estimate the gaze of the camera wearer by using a saliency prediction ap-
proach. This lets us recover important information, which the camera cannot
record, and predict the importance of the social relation between the user
and the people involved in his social group. While head orientations and
distances can be inferred for the people the user can see (e.g. the others),
saliency estimates a component of the behavior of the wearer himself. An
example of the output of our method is shown in Fig. 10.1.

In the rest of this chapter, we will discuss the following issues:

■ The definition of a novel head pose estimation approach which can cope
with the challenges of the egocentric vision scenario: using a combina-
tion of facial landmarks and shape descriptors, our head pose method is
robust to steep poses, low resolutions and background clutter.

■ The formulation of a 3D ego-vision people localization method capa-
ble of estimating the position of a person without relying on calibration.
Camera calibration is a process that cannot be automatically performed
on different devices and would cause a loss in generality for our method.
We use instead random regression forests that employ facial landmarks
and the head bounding box as features, resulting in a robust pose-
independent distance estimation of the head.

■ Modeling of a supervised correlation clustering algorithm using struc-
tural SVM to learn how to weight each component of the feature vector
depending on the social situation it is applied to. This is due to the fact
that humans perform differently in different social situations and the way
groups are formed can greatly differ.
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■ The estimation of the degree of social interaction between the camera
wearer and the other people involved in his social group, through the
definition of a social strength score derived from a supervised saliency
prediction model.

The proposed method is evaluated on publicly available datasets, and by
comparing it with several recent algorithms. Each component of the frame-
work is extensively discussed. While experimental results highlight some
open problems, they show a new way for computer vision to deal with the
complexity of unconstrained scenarios such as egocentric vision and human
social interactions.

10.2 RELATED WORK

In this section, we review the literature related to head pose estimation and
social interactions with particular attention to egocentric vision approaches.

10.2.1 Head pose estimation

The problem of estimating the head pose has been widely studied in com-
puter vision. Existing methods can be roughly divided into two main cat-
egories, regardless of whether their aim is to assess the head pose on still
images or video sequences.

Considering the most important solutions for head pose estimation in still
images, We et al. [31] proposed a two-level classification framework based
on Gabor wavelets in which the first level has the objective of deriving a
good estimate of the pose within some uncertainty, while the second level
aims at minimizing this uncertainty by analyzing finer structural details cap-
tured by bunch graphs. Ma et al. [21] presented a multiview face representa-
tion based on local Gabor binary patterns extracted on different sub-regions
of the images. Despite these methods performing well on different publicly
available datasets, they have significant performance losses when applied to
less constrained environments, as egocentric vision contexts.

In [36], an unified model for face detection, pose estimation and landmark
localization for “in the wild” images is presented. In particular, the proposed
model is based on mixtures of trees with a shared pool of parts in which ev-
ery facial landmark is modeled as a part and global mixtures are used to
capture topological changes due to varying the viewpoint. A different ap-
proach is introduced by Li et al. [20] who developed a central profile-based
3D face pose estimation method. The central profile is a 3D curve that di-
vides the face and has the characteristic of having its points lying on the
symmetry plane. By relying on the Hough transform to determine the sym-
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metry plane, Li et al. estimate the head pose using the normal vectors of
the central profile which are parallel to the symmetry plane. For a com-
prehensive study summarizing about 90 of the most innovative head pose
estimation methods, we refer to the survey presented in [22].

Moving to the video domain, several existing approaches exploit 3D infor-
mation to estimate the head pose [23,25]. [23] who However, this kind of
information can be hardly employed in an egocentric vision environment
in which wearable devices, being aimed at more general purpose users and
being on a mid-low price tier, usually lack the ability to capture 3D fea-
ture points. Moreover, due to the unpredictable motion of both camera and
object, a robust 3D model is often hard to recover from multiple images.
Instead of using a 3D model, Huang et al. [12] developed a computational
framework capable of performing detection, tracking and pose estimation of
faces captured by video arrays. To estimate the face orientation, they com-
pared through extensive experiments a Kalman filtering based tracker and
multistate continuous density hidden Markov models. Orozco et al. [26]
presented a head pose estimation technique based on mean appearance tem-
plates and multiclass SVM, and effectively applied to low-resolution video
frames representing crowded public spaces under poor light conditions.

10.2.2 Social interactions

There is a growing interest in understanding social interactions and human
behavior of individuals present in video frames using computer vision tech-
niques. However, the majority of these methods are based on the video
surveillance setting [24,33,35], which presents significant differences with
respect to the first-person perspective. One of the first attempts of study-
ing social interactions in the egocentric vision domain is that presented
by Fathi et al. [11] who aim at recognizing five different social situations
(monologue, dialog, discussion, walking dialog, walking discussion). By
using day-long videos recorded from an egocentric perspective in an amuse-
ment park, they extract three categories of features: location of faces around
the first person, patterns of attention and roles take by individuals and pat-
terns of first-person head movement. These features are then used in a
framework that explores the temporal dependency over time to detect the
types of social interactions.

Yonetani et al. [34] presented a method to understand the dynamics of social
interactions between two people by recognizing their actions and reactions
using a head-mounted camera. In particular, to recognize micro-level ac-
tions and reactions, such as slight shifts in attention, subtle nodding, or small
hand actions, they proposed to use paired egocentric videos recorded by
two interacting people. In [1], instead, a new pipeline for automatic social
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■ FIGURE 10.2 Schematization of the proposed approach.

pattern characterization of a wearable photo-camera user is presented. The
proposed pipeline first of all studies a wider set of features for social inter-
action detection and second categorizes the detected social interactions into
two broad categories of meetings (i.e. formal and informal). Even though
all these methods provide interesting insights for understanding social in-
teractions in the egocentric vision domain, none of them takes into account
the group dynamics and the social relations within the group as presented in
this work.

10.3 UNDERSTANDING PEOPLE INTERACTIONS

To deal with the complexity of understanding people interactions and de-
tecting groups in real and unconstrained egocentric vision scenarios, our
method relies on several components (see Fig. 10.2). We start with an ini-
tial face detection and then track the head to follow the subjects between
frames. Head pose and 3D people locations are estimated to build a “bird
view” model that is the input of the supervised correlation clustering in or-
der to detect groups in different contexts based on the estimation of pairwise
relations of their members. To further analyze the social dynamics, we esti-
mate the social relevance of each subject by means of a saliency prediction
model based on deep neural networks.
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10.3.1 Face detection and tracking

A typical egocentric vision feature is a steep motion of the camera wearer.
This can happen, for example, when a camera wearer is looking around for
something. In this case, this person has not focused his attention on some
point of interest and hence those frames are likely to be not interesting.
Therefore, a first step to the face tracking procedure is to recognize whether
tracking itself should be performed or not.

From a technical point of view, the steep motion can significantly increase
the blur effect in the video sequence. If not addressed properly, this situation
can degrade the tracking to the point that it may not be possible to resume
it when the attention of the subject stabilizes again. To deal with this issue,
at each frame we compute the amount of blurriness and decide whether
to proceed with the tracking or to skip it. The idea of our approach is to
evaluate the gradient intensity in the frame and to learn a threshold that can
recognize a fast head movement from the normal blur caused by motion
of objects, people or background. We define a simple blur function which
recognizes the blur degree in a frame F , according to a threshold θB :

Blur(F, θB) =
∑
F

√
∇S2

x(F )+∇S2
y(F ), (10.1)

where ∇S2
x(F ) and ∇S2

y(F ) are the x and y components of Sobel’s gradient
in the frame and θB is the threshold under which the frame is discarded
due to excessive motion blurriness, a parameter which can be learned by
computing the average amount of gradient in a sequence.

This preprocessing step, which can be performed in real-time, effectively
allows us to discard frames that could lead the tracker to adapt its model to
a situation where gradient features cannot be reliably computed. To robustly
track people in our scenario we adopt the tracker TLD [17] as it is able to
deal with fast camera motion and occlusions which often occur between
members of different groups.

10.3.2 Head pose estimation

To estimate an accurate head pose our approach is based on two different
techniques: facial landmarks and shape-based head pose estimation.

With the facial landmarks approach, head pose can be accurately estimated
if the face resolution is high enough and the yaw, pitch and roll angles of the
head are not excessively steep. However, when these conditions are not sat-
isfied and the first strategy fails, our method relies on shape-based head pose



206 CHAPTER 10 Recognizing social relationships from an egocentric vision perspective

estimation and uses HOG features and a classification framework composed
of SVM followed by HMM.

The facial landmark estimator is the first component of our solution: if this
can be computed, the head pose can be reliably inferred and no further pro-
cessing is needed.

To estimate facial landmarks, we employ the method proposed by Smith et
al. [32]. We fix the number of landmarks at 49 as it is the minimum number
of points for a semantic face description [28]. To obtain the head pose we
perform a face alignment procedure by applying the supervised gradient
descent method, which minimizes the following function over �x:

f (x0 +�x) = ‖h(λ(x0 +�x))− φ∗‖2
2 , (10.2)

where x0 is the initial configuration of landmarks, λ(x) is the function that
indexes the N landmarks in the image and h is a non-linear feature extrac-
tion function; in this case the SIFT operator. φ∗ = h(λ(x∗)) represents the
SIFT descriptors computed over manually annotated landmarks in the im-
age. Finally, the obtained pose is quantized over five classes, representing
the intervals [−90,−60), [−60,−30), [−30,30], (30,60] and (60,90].

If the landmark estimator fails, we combine it with a second component
based on the shape of the subject’s head. Before computing the head de-
scriptor, which will be used in the pose classification step, a preprocess step
is required in an unconstrained scenario as egocentric vision: background
removal inside the bounding boxes of the tracked faces. We use an adap-
tation of the segmentation algorithm GrabCut [27], which minimizes the
following energy function:

â = arg min
α

U(α,k, θ, z) + V (α, z), (10.3)

where z is the image; α is the segmentation mask with αi ∈ {±1}. θ is the
set of parameters of the K components of a GMM and k, kn ∈ {1, . . . ,K} is
the vector assigning each pixel to a unique GMM. The U term encodes the
likelihood of each color that exploits the GMM models, and V is the term
describing the coherence between neighborhood pixels (see [28] for more
details). Intuitively, the key aspect of the GrabCut algorithm is its usage
of GMMs to model pixels belonging to background or foreground in the
term U . These models represent the distribution of color and are used to
assign a label α to each pixel. Using the standard GrabCut, we manually
initialize both foreground and background region TF and TB to build the
respective GMMs.
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Exploiting the high-frame rate of egocentric videos it is possible to assume
that only slight changes in the foreground and background mixtures will
occur between two subsequent frames. This allows us at time t to build
a GMMt based on GMMt−1 instead of reinitializing the models. This is
equivalent to soft assigning pixels that would end up in the TU region, which
is sensitive to noise.

In our preliminary experimental evaluation we observe that this initializa-
tion is necessary, because a segmentation on a bounding box, resulting from
the tracking phase, without any assumptions yields poor results. This is due
to the fact that small portions of background pixels are often included in
the tracked bounding box. When those elements do not appear outside the
target region, p ∈ TU , p /∈ TB (where TU is the region of pixels marked
as unknown), they cannot be correctly assigned to the background by the
algorithm and they produce a noisy segmentation.

Once a precise head segmentation is obtained, the resulting image is re-
sized to a fixed size 100 × 100 (to ensure invariance to scale), converted
to grayscale and equalized. On this image a dense HOG descriptor is ex-
tracted using 64 cells and 16 bins per cell. To obtain the final feature vector,
a power normalization technique has been applied. Using these features, the
head pose is then predicted using a multiclass linear SVM classifier follow-
ing the same quantization used in the landmark based estimation.

In a social scenario where three or more subjects’ activity revolves around
a discussion or any kind of similar social interaction, orientation transitions
are temporally smooth and abrupt changes are avoided as changes tend not
to occur when one subject is talking.

To enforce temporal coherence that derives from a video sequence, a state-
ful hidden Markov model technique is employed. The HMM is a first order
Markov chain built upon a set of time-varying unobserved variables/states
zt and a set of observations ot . In our case, we set the latent variables to
coincide with the possible head poses, while the observed variables are the
input images. In practice, we set in the state transition matrix A a high prob-
ability of remaining in the same state, a lower probability for a transition to
adjacent states and a very low probability for a transition to the non-adjacent
states. This leads our approach to have continuous transitions between adja-
cent poses, removing impulsive errors that are due to wrong segmentation.
This translates into a smooth transition among possible poses, which is what
conventionally happens during social interaction among people in egocen-
tric vision settings.

Our method combines the likelihood p(zt |ot ) of a measure ot to belong to
a pose zt provided by the SVM classifier with the previous state zt−1 and
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the transition matrix A derived from the HMM, obtaining the predicted pose
likelihood, which is the final output.

To calibrate a confidence level to a probability in a SVM classifier, so that
it can be used as a observation for our HMM, we trained a set of Venn Pre-
dictors (VPs) [19], on the SVM training set. We have the training set in the
form S = {si}i=1...n−1 where si is the input-class pair (xi , yi). Venn predic-
tors aim to estimate the probability of a new element xn belonging to each
class Yj ∈ {Y1 . . . Yc}. The prediction is performed by assigning each one
of the possible classification Yj to the element xn and dividing all the sam-
ples {(x1, y1) . . . (xn,Yj )} into a number of categories based on a taxonomy.
A taxonomy is a sequence Qn, n = 1, . . . ,N of finite partitions of the space
S(n) × S, where S(n) is the set of multisets of S of length n. In the case of
multiclass SVM the taxonomy is based on the largest SVM score; therefore
each example is categorized using the SVM classification in one of the c

classes.

After partitioning the element using the taxonomy, the empirical probability
of each classification Yk in the category τnew that contains (xn,Yj ) is

pYj (Yk) = |{(x∗, y∗) ∈ τnew : y∗ = Yk}|
|τnew| . (10.4)

This is the pdf for the class of xn but after assigning all possible classifica-
tions to it we get

Pn = {pYj : Yj ∈ {Y1, . . . , Yc}}, (10.5)

which is the well-calibrated set of multiprobability predictions of the VP
used in the HMM to compute the final output.

10.3.3 3D people localization

To deal with any egocentric camera, we decided not to use any calibration
technique in estimating the distance of a subject from the camera wearer.
The challenges posed by this decision are somewhat mitigated by the fact
that, aiming to detect groups in a scene, the reconstruction of the exact dis-
tance is not needed and small errors are lost in the quantization step. We
have a depth measure which preserves the positional relations between in-
dividual suffices.

With that in mind, we assume that all the heads in the image lie in a plane,
so the only two significant dimensions of our 3D reconstruction are (x, z),
resulting in a “bird’s eye view” model. To estimate the distance from the
person wearing the camera, we first use the facial landmarks computed in
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■ FIGURE 10.3 Steps used in our distance estimation process.

the head pose estimation phase. Letting N be the number of landmarks, we
build the feature vector

d = {di = ‖li , li+1‖ , i = 1, . . . ,N − 1, li ∈ L} , (10.6)

where ‖·‖ is the standard euclidean distance. This feature vector is used
in a random regression forest [3] trained using the ground truth depth data
obtained from a Kinect sensor. To reduce the impact on the distance of a
wrong set of landmarks, we apply over a 100 frame window a robust local
regression smoothing (RLOESS) based on the LOWESS method [6].

This solution provides a good estimation of the distance between a subject
and the camera wearer dealing with the topological deformations that are
due to changes in pose and with the non-linearity of the problem.

In the case where the facial landmarks estimator fails, we compute the dis-
tance by using a random regression forest trained on the tracked bounding
box used as feature. The estimation accuracy of this approach is less than
the landmark solution, but it makes our approach more robust in uncon-
strained scenarios. To estimate the location of a person accounting for the
projective deformation in the image, we build a grid with variable cells sizes.
The distance allows us to locate the subject with one degree of freedom (x)
(Fig. 10.3B): the semicircle in which the person stands is decided based on
the distance computed previously, resulting in a quantization of the distance.
Using the x position of the person in the image plane and employing a grid
capable of accounting for the projective deformation (Fig. 10.3C), it is now
possible to place the person with one further degree of freedom z. By over-
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lapping the two grids (Fig. 10.3D) the cell in which the person stands can be
decided and the bird’s eye view model can finally be created (Fig. 10.3E).

Each person is then represented by its location in the 3D space (x, z, o),
where o represents the estimated head orientation, and a graph connecting
people is created (Fig. 10.3F). Each edge connecting two subjects p and q

has a weight φpq which is the feature vector that includes mutual distances
and orientations.

10.4 SOCIAL GROUP DETECTION

To deal with the group detection problem, head pose and 3D people infor-
mation can be used, introducing the concept of the relationship between
two individuals. Given two people p and q, their relationship φpq can be
described in terms of their mutual distance, the rotation needed by the first
to look at the second and vice versa φpq = (d, opq, oqp).

Notice that the distance d is by definition symmetric, while the orientations
opq and oqp are not. An example is given by the situation where two people
have the same orientation resulting in p looking at q’s back; they will have
opq = 0 and oqp = π , so we need two separate features.

Practically it can be hard to fix this definition of relationship and use it in
any scenario. In fact, in some contexts people in the group are looking at
the same object/scene and none of them looks at any other. Therefore, the
need of an algorithm is obvious that is able to differentiate social contexts
and learn how to weight distance and orientation features.

10.4.1 Correlation clustering via structural SVM

To detect social groups based on the pairwise relations of their members
we use the correlation clustering algorithm [2]. Let x be a set of people in
the video sequence, their pairwise relations can be encoded by an affinity
matrix W , where for Wpq > 0 two people p and q are in the same group
with certainty |Wpq| and for Wpq < 0 p and q belong to different clusters.
The correlation clustering y of a set of people x is then the partition that
maximizes the sum of affinities for item pairs in the same cluster:

arg max
y

∑
y∈y

∑
r �=t∈y

Wrt, (10.7)

where the affinity between two people p and q, Wpq, is represented as a
linear combination of the pairwise features of orientation and distance over
a temporal window. To obtain the best partition of social groups in different
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social contexts, our experiments showed that the weight vector w should not
be fixed but, instead, learned directly from the data.

Given an input xi , a set of distance and orientation features of a set of people,
and yi , their clustering solution, we can observe that a graph describing
connections between members suits better the social dimension of the group
interaction. This leads to an inherently structured output that is required to
be treated accordingly. Structural SVM [29] offers a framework to learn
structured outputs. This classifier, given a sample of input–output pairs S =
{(x1,y1), . . . , (xn,yn)}, learns the function mapping an input space X to the
structured output space Y .

A discriminant function F : X × Y → � is defined over the joint input–
output space. Hence, F(x,y) can be interpreted as measuring the com-
patibility of an input x and an output y. As a consequence, the prediction
function f results:

f (x) = arg max
y∈Y F(x,y,w) (10.8)

where the solution of the inference problem is the maximizer over the label
space Y , which is the predicted label. Given the parametric definition of
correlation clustering in Eq. (10.7), the compatibility of an input–output
pair can be defined by

F(x,y,w) = wT �(x,y) = wT
∑
y∈y

∑
r �=t∈y

φpq (10.9)

where φpq is the pairwise feature vector of elements p and q. This problem
of learning in structured and interdependent output spaces can be formulated
as a maximum-margin problem. We adopt the n-slack, margin-rescaling for-
mulation of [29]:

min
w,ξ

1

2
‖w‖2 + C

n

n∑
i=1

ξi

s.t. ∀i : ξi ≥ 0,

∀i,∀y ∈ Y\yi : wT δ�i(y) ≥ �(y,yi )− ξi .

(10.10)

Here, δ�i(y) = �(xi ,yi )−�(xi ,y), ξi are the slack variables introduced to
accommodate for margin violations and �(y,yi ) is the loss function. In this
case, the margin should be maximized in order to jointly guarantee that, for a
given input, every possible output result is considered worst than the correct
one by at least a margin of �(yi ,y)− ξi , where �(yi ,y) is bigger when the
two predictions are known to be more different. We rely on the cutting plane
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algorithm in which we start with no constraints, and iteratively we find the
most violated one and re-optimize it until convergence.

The problem of group detection is similar to the noun-coreference prob-
lem [5] in NLP, where nouns have to be clustered according to who they
refer to. For this problem, recently a suitable scoring measure has been pro-
posed: the MITRE loss function [30]. It, or formally �M(y, ȳ), is based
on the understanding that, instead of representing each subject’s links to-
wards every other person, connected components are sufficient to describe
dynamic groups and thus spanning trees can be used to represent clus-
ters.

10.5 SOCIAL RELEVANCE ESTIMATION

Group detection estimates how people interact with each other by analyzing
the geometry of their social formations. What cannot be unveiled by detect-
ing social groups are all the properties of the social formation which depend
on the particular observer, like the importance attached by an observer to
each person in a group. We name this subjective property social relevance.
By providing complementary information to what is provided by group es-
timation, we argue that social relevance enables a better understanding of
the social dynamics from an egocentric prospective. Clearly, social rele-
vance cannot be fully estimated from features like head pose and distance.
To some extent, the camera wearer could give more importance to a distant
person than to a closer one, or even to somebody who is turned away.

Sensors that can objectively measure the relevance of a person from the
point of view of an observer, like eye-tracking glasses, are expensive and
more uncomfortable to wear in public than a tiny camera. Therefore, to es-
timate social relevance relying only on the frames captured by a wearable
camera, we choose to rely on saliency prediction [7,8,13,15]. Saliency pre-
diction architectures predict the distribution of eye fixation points on a given
image, and are trained on data captured from eye-tracking devices. By pro-
viding a distribution of eye fixations over an image, this lets us estimate the
amount of fixations each person on the scene would receive from the wearer,
and by extension, the social relevance of each person. More in detail, given
a video, we first extract the saliency maps for all video frames. We then de-
fine the social relevance of each person as the accumulation of the saliency
values inside the person’s bounding box summed over time. In this way, for
each subject appearing in the video frames, we can obtain a measure of his
individual relevance to the social interaction.
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To compute saliency maps, we employ the Saliency Attentive Model
(SAM1) presented in [8], which has shown state-of-the-art results on popu-
lar saliency benchmarks, such as the MIT Saliency Benchmark [4] and the
SALICON dataset [16]. This model is composed of three main components.
First, a Convolutional Neural Network (CNN) extracts a set of feature maps
from the original image. Because of the presence of spatial pooling opera-
tions, which compute the maximum activation over a sliding window, this
would largely downscale the activations of the last layers with respect to the
original image size. As is easy to see, a scaled output reduces the accuracy
of predictions and their localization accuracy, which is fundamental in the
context of predicting the saliency on faces that might occupy only a small
portion of the frame. To control this phenomenon, we employ dilated con-
volutions. In short, dilation increases the spatial support of convolutions, by
enlarging the kernel size, but keeps the number of parameters constant, set-
ting the pixels of the kernel to zero at evenly spaced locations. The feature
maps coming from the CNN are then fed through a recurrent layer which,
thanks to the incorporation of attentive mechanisms, selectively attends to
different regions of the input. In particular, we use a Long Short-Term Mem-
ory network (LSTM) with convolutional operations to sequentially refine
and enhance the input feature maps. Predictions are finally combined with
multiple prior maps directly learned by the network, thus effectively incor-
porating the center bias present in human eye fixations.

10.6 EXPERIMENTAL RESULTS

To provide an evaluation of the proposed social groups detection method
and its main components, we rely on two publicly available datasets, namely
EGO-HPE for evaluating the head pose estimation component and EGO-
GROUP to assess the performance of group detection, distance estimation
and social relevance.

The EGO-HPE dataset2 is used to test the proposed head pose estimation
method. It features more than 3400 frames where bounding boxes and head
pose labels are provided for every person in the frame. Aiming at specifi-
cally evaluating the head pose estimation in egocentric vision, this dataset
features the typical challenges of body-worn cameras, such as background
clutter, different lighting conditions and motion blur.

1Source code available at http://github.com/marcellacornia/sam. The method has also won
the LSUN Saliency Challenge in 2017.
2http://imagelab.ing.unimore.it/files/EGO-HPE.zip.
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■ FIGURE 10.4 Example sequences from the EGO-GROUP dataset.

On the other hand, the EGO-GROUP dataset3 features 18 video sequences
in the five different scenarios represented in Fig. 10.4: a coffee break sce-
nario with very poor lighting and random backgrounds (first row), a labora-
tory setting with limited background clutter and fixed lighting conditions
(second row), an outdoor scenario (third row), a festive moment with a
crowded environment (fourth row), and a conference room setting where
people’s movement and positioning is tied to seats (fifth row). A total of 23
different subjects appear in the videos.

10.6.1 Head pose estimation

Among the different features employed in the social group detection, head
pose estimation is arguably one of the most important. In fact, errors in the
head pose create a strong bias in the features used in the group estimation.

To provide the best results, our head pose estimation relies on two steps:
landmark estimation and HOG-based pose classification. Both approaches
have different characteristics: facial landmarks are very accurate and fast
but their performance drops quickly when facing more extreme head poses,
making them suitable for near frontal images but unreliable under steep pose
angles. On the other hand, shape features such as histogram of gradients ex-

3http://imagelab.ing.unimore.it/files/EGO-GROUP.zip.
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Table 10.1 Comparison between different techniques. In the different
methods, PN indicates the usage of power normalization, HMM indi-
cates the use of HMM-based temporal smoothing

Method EGO-
HPE1

EGO-
HPE2

EGO-
HPE3

EGO-
HPE4

HOG+PN 0.710 0.645 0.384 0.753
HOG+PN+HMM 0.729 0.649 0.444 0.808
Landmarks 0.537 0.685 0.401 0.704
Landmarks+HOG 0.750 0.731 0.601 0.821
Landmarks+HOG+HMM 0.784 0.727 0.635 0.821

cel at discriminating steep head poses and can complete the estimation when
landmarks cannot be reliably computed. Furthermore, HOG descriptors are
much less sensitive to scale, which can be helpful when dealing with sub-
jects in the background.

Table 10.1 compares the two approaches, clearly showing that the combina-
tion of landmarks and HOG features achieves the best results.

To show how egocentric vision’s unique perspective can affect the results
of an approach if not explicitly taken into account, we tested our egocen-
tric head pose estimation method against other recent methods over the
EGO-HPE dataset. The first method we compared to is proposed by Zhu et
al. [36]: by building a mixture of trees with a shared pool of parts, where
each part represents a facial landmark, they use a global mixture in order
to capture topological changes in the face due to the viewpoint, effectively
estimating the head pose. To achieve a fair comparison in terms of required
time, we used their fastest pretrained model and reduced the number of lev-
els per octave to one. This method, while being far from real-time, provides
extremely precise head pose estimations even in egocentric vision scenarios
when it can overcome detection difficulties. The second method used in our
comparison is [10]. This method provides real-time head pose estimations
by using facial landmark features and a regression forest trained with exam-
ples from five different head poses. Table 10.2 shows the results in terms of
the accuracy of this comparison.

10.6.2 Distance estimation

To assess the quality of our distance estimation method, by keeping the re-
gression architecture unvaried, we test two commonly employed techniques.
The first relies on using the dimensions of the head bounding box as fea-
tures, while the second one uses the area of the segmented face. Table 10.3
shows this comparison in terms of absolute error. The Bounding Box method
employs the TLD tracker in order to estimate the subject’s bounding box,
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Table 10.2 Comparison of our head pose estimation and two recent
methods on EGO-HPE dataset

Our method Zhu et al. [36] Dantone et al. [10]

EGO-HPE1 0.784 0.685 0.418

EGO-HPE2 0.727 0.585 0.326

EGO-HPE3 0.635 0.315 0.330

EGO-HPE4 0.821 0.771 0.634

Table 10.3 Comparison between different
distance estimation approaches

Method Abs. error
Area (baseline) 12.67
Bounding Box 5.59
Landmarks 1.91
Landmarks + Moving Average 1.72
Landmarks + LOESS 1.68
Landmarks + RLOESS 1.60

while the Area method relies on the segmentation of the face surface. The re-
sults show that using biologically-inspired features such as the ratio between
different facial landmarks can greatly improve the results when compared
to other methods.

Aiming to improve our results, we apply to our distance sequence a smooth-
ing filter. As Table 10.3 shows, using a moving average filter can improve
the results by 9,95%, while LOESS and RLOESS smoothing methods yield,
respectively, an error reduction of 12.04% and 16.23%. In both the LOESS
and the RLOESS methods the span has been set to 10% of the data.

10.6.3 Groups estimation

A critical issue when training the social group detection method is how to
deal with data from different scenarios. In fact, depending on the social
situation, distance and pose features can have different significance, e.g.
when there is not much space available, people cluster together regardless
of their will to form a coherent group. For this reason, training should be
context dependent. Table 10.4 reports the performance of our method on the
EGO-GROUP dataset, where the training is repeated on the first video of
each scenario. Furthermore, results obtained by training over the union of
the individual training sets are also reported. To the best of our knowledge,
no other methods deal with the estimation of social groups in egocentric
scenarios.



Table 10.4 Comparison between training variations on our method. The table shows how different training choices can deeply
impact the performances. All tests have been performed using a window size of eight frames

Test scenario Training: Laboratory Training: Coffee Training: Party
Error Precision Recall Error Precision Recall Error Precision Recall

Coffee 10.74 83.04 97.29 9.23 82.67 100.00 18.04 68.76 100.00
Party 9.33 100.00 83.63 0.00 100.00 100.00 0.00 100.00 100.00
Laboratory 11.91 91.68 85.79 14.75 74.67 99.43 14.43 74.81 100.00
Outdoor 11.47 87.88 95.11 10.22 82.09 98.27 11.30 81.17 100.00
Conference 16.27 75.24 93.32 14.56 73.94 95.15 18.97 75.58 95.28

Test scenario Training: Outdoor Training: Conference Training: All
Error Precision Recall Error Precision Recall Error Precision Recall

Coffee 6.80 92.54 94.92 13.88 79.99 88.41 8.11 85.50 99.60
Party 10.92 100.00 80.34 7.11 90.12 95.42 3.15 96.27 98.05
Laboratory 27.75 72.60 72.81 12.02 90.75 87.22 19.97 74.32 88.05
Outdoor 16.22 81.11 90.24 16.71 74.92 94.81 16.24 84.33 88.67
Conference 14.46 74.09 95.20 13.95 74.67 95.10 17.07 74.04 93.73



218 CHAPTER 10 Recognizing social relationships from an egocentric vision perspective

Table 10.5 Comparison between training the correlation clustering
weights using SSVM and performing clustering without training (fixed
weights). The window size used in the experiment is 8

Method Coffee Party Labo-
ratory

Outdoor Confer-
ence

CC Error 12.75 0.00 14.28 17.13 15.54
Precision 74.86 100.00 73.12 71.81 74.43
Recall 96.29 100.00 97.55 97.98 91.39

CC+SSVM Error 9.23 0.00 11.91 16.22 13.95
Precision 82.67 100.00 91.68 81.11 74.67
Recall 100.00 100.00 85.79 90.24 95.10

From the data reported in Table 10.4, it can be noticed how training in spe-
cific scenarios can result in overfitting. For example, the weights learned
by training on the outdoor sequences provide better results when testing on
coffee than the ones trained on coffee itself. This is due to overfitting on a
particular dynamic present in both scenarios but, unsurprisingly, it provides
poor performances when testing on videos from other scenarios. In order to
have an estimate of how different training methods perform, the standard
deviation over the absolute error can be computed. It emerges that the lab-
oratory setting is the more general training solution with an average error
of 11.94 and a standard deviation of 2.61, while training over the party se-
quence, although it can achieve impeccable results over its own scenario and
an average error of 12.55, presents a much higher deviation (7.65). Train-
ing over the set given by the union of each training set from the different
scenarios results in a standard deviation of 7.01 over a mean error of 12.91,
showing how this solution, while maintaining the overall error rates, does
not provide a gain in generality. This confirms that different social situa-
tions call for different feature weights and that context-dependent training
is needed to adapt to how humans change their behavior based on the situa-
tion.

To stress the importance of domain specific training of the feature weights,
we report results of trainingless clustering. That is, all the feature weights
are fixed at the same value, effectively assigning the same importance to
distance and orientation features. Table 10.5 reports these results: it can be
noticed how the algorithm is often biased towards placing all the subjects
into one single group. This is showed by the high recall and the lower pre-
cision: the MITRE loss function penalizes precision for each person put in
the wrong group, while the recall stays high. Placing every person in the
same group hence results in an average error due to the fact that, not leaving
any subject out of a group provides a high recall. In our experiments, we
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■ FIGURE 10.5 Weight values in the five different training scenarios. The scenarios are: 1) laboratory, 2) party,
3) conference, 4) coffee, 5) outdoor.

set the clustering window size to eight frames, a value that our preliminary
experiments showed to achieve a good compromise between robustness to
noise and fine grained responsiveness to group changes.

To further evaluate our approach, we discuss how the clustering weights
vary in different scenarios. Fig. 10.5 shows the comparison between the dif-
ferent components of the weight vectors. As can be noticed, performing the
training over different scenarios yields significantly different results. For ex-
ample, clustering a sequence in the fourth scenario gives more importance
to the second feature (the orientation of subject 1 towards subject 2), slightly
less importance to the spatial distance between the two and very little impor-
tance to the orientation of 2 towards 1. In scenario 5, the outdoor sequence,
the most important feature is recognized to be the distance, correctly re-
flecting the human behavior where, being outdoor, different groups tend to
increase the distance between each other thanks to the high availability of
space (Fig. 10.6).

A negative weight models the fact that, during the training, our approach
has learned that the feature that weight relates to can decrease the affinity
of a pair. A typical example of such situation is when a person is giving
us the back: while our orientation can have a high similarity value towards
that person, that feature will probably lead the system to wrongly put us in
the same group. Our approach learns that there are situations where some
features can produce wrong clustering results and assign a negative weight
to them.
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■ FIGURE 10.6 Examples of the results obtained by
our method. Different groups are shown by different
link colors.

10.6.4 Social relevance

While the group estimation evaluated in the previous section describes how

people interact with each other, we also evaluate the individual relevance

of the subjects that partake to the social interaction. In particular, we argue

that while head pose and distance information are instrumental in estimat-

ing social groups, visual saliency can be used to understand who are the

most relevant subjects according to what is recorded by the egocentric cam-

era.

Here, we rely on the method described in Section 10.5 to compute saliency

maps of the EGO-GROUP dataset sequences. The overall saliency value of
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■ FIGURE 10.7 Sample results on the social relevance of each subject. Left: saliency map overlay. Right: social
relevance of the participants to each considered scenario.

a person is then obtained by accumulating the raw saliency contained in the

person’s bounding box and summing it over the temporal dimension. The

insight behind this is that, while group estimation captures the overall group

dynamics, not all the members of a group may have the same importance for

the person wearing the camera and analyzing the social relevance through

the saliency estimation can provide information complementary to what is

provided by the group estimation.

Fig. 10.7 provides qualitative results of this analysis on five different scenar-

ios. On the left, a sample frame with the saliency map overlay is provided,

while on the right side a plot of the individual saliency scores of the par-

ticipants is provided. It may be noticed how the information provided by

evaluating the saliency of individual participants is complementary to the

group data. In fact, taking Fig. 10.7A as an example, the saliency estima-

tion provides remarkable cues on who are the most interesting members of

the foreground group, while it agrees with the group estimation in assign-

ing low relevance to the people forming the background group. Similarly, in

the party scenario (Fig. 10.7D) there is only one big group, and evaluating

the individual saliency values can provide a better insight on the intra-group

dynamics.
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■ FIGURE 10.7 (continued)

10.7 CONCLUSIONS

In this chapter we presented a novel approach to detecting social groups

using a head-mounted camera. The proposal relies on a head pose classifica-

tion technique combining landmarks and shape descriptors in a temporally

smoothed HMM framework. Furthermore, 3D location estimation of the

people without the need of camera calibration is also presented. Using this

information, the approach is able to build a “bird’s eye view” model that is

the input of the supervised correlation clustering in order to detect the group

in different contexts. An extensive experimental evaluation shows com-

petitive performance on two publicly available egocentric vision datasets,

recorded in real and challenging scenarios.
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