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The evaluation of retrieval effectiveness by means of test collections is a commonly used methodology in

the information retrieval field. Some researchers have addressed the quite fascinating research question of

whether it is possible to evaluate effectiveness completely automatically, without human relevance assess-

ments. Since human relevance assessment is one of the main costs of building a test collection, both in human

time and money resources, this rather ambitious goal would have a practical impact. In this article, we repro-

duce the main results on evaluating information retrieval systems without relevance judgments; furthermore,

we generalize such previous work to analyze the effect of test collections, evaluation metrics, and pool depth.

We also expand the idea to semi-automatic evaluation and estimation of topic difficulty. Our results show that

(i) previous work is overall reproducible, although some specific results are not; (ii) collection, metric, and

pool depth impact the automatic evaluation of systems, which is anyway accurate in several cases; (iii) semi-

automatic evaluation is an effective methodology; and (iv) automatic evaluation can (to some extent) be used

to predict topic difficulty.
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1 INTRODUCTION

The evaluation of Information Retrieval (IR) systems by means of test collections allows re-
searchers to evaluate, develop, and compare different retrieval systems or algorithms in a well-
defined experimental setting. The test collection methodology, defined by Cleverdon with the cre-
ation of the Cranfield collections in the early 1960s (Cleverdon 1991), is currently carried on by
many initiatives, like TREC, NTCIR, FIRE, CLEF, and so on, which model the evaluation as a com-
petition. A typical test collection is composed by:

—a collection of documents;
—a set of description of information needs (often called topics);
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—a set of relevance judgments for a subset of topic-document pairs, made by experts and
taken as a ground truth (usually called qrels).

To build a test collection is an expensive process: the TREC initiative required in 20 years more
than 30 million dollars (Tassey et al. 2010). The most expensive part of building a test collection is
to produce, for every topic, the relevance assessment for the documents retrieved by the retrieval
systems participating in the competition. To reduce the effort of this process, it is common practice
to pool a subset of the top 1,000 documents retrieved by each system; the relevance assessment is
then performed only for the pooled documents (Voorhees and Harman 2000). The pooling method
leads to reliable results in evaluating the effectiveness of retrieval systems (Zobel 1998), but even
with the pooling strategy the cost required to produce the relevance judgments is still high.

Many researchers tried to reduce the effort of producing relevance assessments in several differ-
ent ways. For example, Lu et al. (2016) and Alonso and Mizzaro (2009) proposed to crowd-source
relevance judgments, Lipani et al. (2016) and Losada et al. (2017) developed novel pooling strate-
gies to build test collections with a reduced number of judgments, Guiver et al. (2009), Robertson
(2011), and Berto et al. (2013) studied the evaluation of IR systems using fewer topics, and many
others tried to propose more sensitive and reliable evaluation metrics (Yilmaz and Aslam 2006).

A perhaps more extreme approach is to produce automatic relevance assessment, i.e., to evalu-
ate the systems participating in a test collection initiative without any relevance judgments, in a
completely automatic way (Soboroff et al. 2001; Spoerri 2007; Wu and Crestani 2003). In this arti-
cle, we focus on this approach, and we pursue the threefold aim of reproducing the main previous
results (Aim A1), generalize them to other collections, metrics, and pool depth (A2), and expand
the approach to derive some insights on related problems not studied yet (A3). More in detail, our
aims can be stated as follows:

A1. To reproduce the main results of the notable works on automatic evaluation of retrieval
systems, as well as present such results in a uniform way.

A2. To generalize such previous work, in particular:
A2a. To analyze the effect of using further test collections, featuring different properties

from those used in the original experiments;
A2b. To study the effect of different evaluation metrics; and
A2c. To study the effect of a shallow pool.

A3. To expand the idea; in detail:
A3a. To experiment with a mixed approach, in which a part of the evaluation is auto-

matic and a part of it is manual; and
A3b. To apply the same approach to a dual problem, the estimation of topic difficulty.1

Both these ideas have not yet been explored, although they do seem quite natural in this
context.

This article is structured as follows. In Section 2, we detail the background of evaluating IR
systems without relevance judgments. In Section 3, we describe data, methods, and measures used
in our experiments. In Section 4, we focus on A1 and reproduce some of the most important work
on evaluating IR systems without relevance judgments. In Section 5, we turn to A2 and generalize
some of the obtained results to other collections, including a more recent one, evaluation metrics,
and a shallow pool. In Section 6, we address A3 by expanding the approach; we report results on
semi-automatic approaches and on topic difficulty. Finally, in Section 7 we conclude and provide
some directions for future work.

1The duality of topic difficulty and system effectiveness will be discussed in detail in Section 6.2.
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2 BACKGROUND

In this section, we discuss the state-of-the-art of ranking and evaluating IR systems without rele-
vance judgments. We first discuss the three main contributions that can be found in the literature
and that will be the focus of this article (Sections 2.1, 2.2, and 2.3); then we also briefly comment
on some related work (Section 2.4).

2.1 The Method by Soboroff et al.

The approach proposed by Soboroff et al. (2001) is the first work investigating the ranking of
retrieval systems without human assessments. With almost 100 citations,2 this paper is considered
by the research community a strong baseline in this context.

Soboroff et al. start questioning what happens if relevant documents are chosen randomly from
the pool, considering the hypothesis that relevant documents occur in the pool according to a
defined probability distribution. To address this question, they design an experiment in which
they estimate a probabilistic model that describes the occurrence of the relevant documents in
the pool. Specifically, they choose to model relevant document occurrence with a normal distri-
butionN (μ,σ ) that requires only two parameters to be estimated from queries, namely the mean
percentage of relevant documents occurring in the pool μ and the standard deviation σ :

μ =
1

n

n∑
i=1

μi ,

σ =

√∑n
i=1 (μi − μ )2

n − 1
,

wheren is the number of topics of the test collection and μi is the percentage of relevant documents
occurring in the pool for the ith topic.

Using this model, Soboroff et al. randomly sample a set of documents and labeled them as “rel-
evant” to form a set of pseudo relevance judgments called pseudo-qrels, in three ways:

—sampling the documents from the official qrels using μ and σ ;
—sampling the documents from the official qrels considering each topic separately, i.e., using
μ1, . . . , μn and σ . Soboroff et al. named this strategy “exact–fraction sampling”;

—sampling the documents from the pool at depth 100, including duplicate documents and
using μ and σ . The rationale of this experiment is that the higher the number of systems
that retrieve a document, the more it is likely to be relevant.

We focus on the first approach since it is the more realistic and because it does not include a poste-

riori knowledge (i.e., knowledge that can be obtained only after the human relevance assessments
have been gathered), except for the mean and standard deviation parameters; furthermore, we pro-
vide an experiment in which we estimate the μ and σ parameters to present a realistic “without
relevance judgments” scenario.

Using the pseudo-qrels, Soboroff et al. present experimental evaluation on all the runs of the
TREC-3, TREC-5, TREC-6, TREC-7, and TREC-8 collections. The effectiveness of the method
is measured by (i) computing, on each topic, the Kendall’s τ correlation between the ground
truth of the official rank of the systems and the rank obtained on the basis of the pseudo-qrels
and (ii) taking the mean τ over all topics. The highest mean τ value is of 0.487, obtained for
the TREC-5 collection (more details on these results will be shown in Table 4 in Section 4).

2Source: http://dl.acm.org/citation.cfm?id=383961; April 21, 2018.
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Although this approach achieves a reasonable performance in terms of correlation, the method
fails mostly on top-ranked systems (i.e., the most interesting ones for the evaluation process),
whose effectiveness is usually heavily underestimated.

Based on the work by Soboroff et al., Aslam and Savell (2003) propose a strategy to infer the
similarity of retrieval systems by assessing the similarity of their retrieved documents. Consid-
ering two retrieval systems and their ranked lists, the measure is simply the ratio between the
number of documents that they have in common divided by the total number of retrieved docu-
ments. Although the proposed measure is trivial and easy to compute, the authors show that it is
able to achieve correlation values with the ground truth similar to those by Soboroff et al. They
also observe that both methods are affected by a “tyranny of the masses” phenomenon: top-ranked
systems (i.e., the systems that lower the correlation in Soboroff et al.’s experiments) are being pun-
ished for retrieving documents significantly different from the average systems in a competition.
Therefore, Aslam and Savell observe that Soboroff et al.’s method assesses the retrieval systems
more in terms of “popularity” than actual “performance.”

This effect has been also investigated by Spoerri (2005), who remarks that “the potential rel-
evance of a document increases exponentially as the number of systems retrieving it increases,”
calling it the Authority Effect. Spoerri also suggests that selecting only a single run per participant
group3 “would help to sharpen the signal and make the Authority Effect more dominant” (Spoerri
2007, page 1061).

2.2 The Method by Wu and Crestani

The work proposed by Wu and Crestani (2003) presents another approach for ranking retrieval
systems without relevance judgment. This technique uses a measure called reference count, which
is developed by the same authors within the data fusion context (Wu and Crestani 2002).

Specifically, suppose we have a topic and a set of retrieval system results on the same data
collection, the reference count of a retrieval system result can be obtained as follows. Given the
set of retrieved documents by a system (called original documents), the reference count is the sum of
the occurrences of these documents in the results of all the other retrieval systems (called reference

documents) up to number of retrieved document per topic, which is usually 1,000.
This approach is called by the authors Basic reference count. However, this technique does

not take into account the different position of reference documents and the position of the original

document. To overcome these limits, Wu and Crestani present four different variations by changing
either or both of the aspects. The first variation (V1) assigns different weighs to reference documents

based on their ranking positions. The second variation (V2) assigns different weights to original

documents based on their ranking positions. The third variation (V3) consists of assigning different
weights to both the reference documents and the original document. Finally, the fourth variation
(V4) assigns different weights based on the reference documents’ ranking positions and the original

document’s normalized scores (instead of their ranking positions).
Wu and Crestani present their results using Spearman’s average rS correlation values over the

topics (the detail of their values over different TREC collections will be shown in Table 5, discussed
in the following). The values are not directly comparable to Soboroff et al.’s, who use τ ; however,
Wu and Crestani compute rS also for Soboroff et al.’s method and find that they obtain average
rS correlation values that are lower than, or comparable with, Soboroff et al.’s. Wu and Crestani
observe that the results are mostly based on two effects: (i) the overlap of the relevant and nonrel-
evant documents retrieved by the systems is quite different, as also shown by Lee (1997); (ii) there

3Initiatives like TREC allow participant groups to submit the results obtained with different variations of their system. One

of them is called “run.”
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is a connection between reference count and the percentage of relevant documents in a ranked
list of a system. Furthermore, they observe that their results are affected by the same problem of
the top-ranked systems as in Soboroff et al. Again, this phenomenon is probably due to the fact
that top-ranked systems are quite peculiar; in fact, they retrieve documents that not many other
systems retrieve.

2.3 The Method by Spoerri

Spoerri (2007) proposes another method to rank retrieval systems without human relevance judg-
ments. The proposed approach starts from the fact that retrieval systems tend to retrieve similar
sets of relevant documents and dissimilar sets of non-relevant documents (Lee 1997). Spoerri’s ap-
proach estimates the relative performance of multiple retrieval systems computing the structure of

overlap between their retrieved documents. Specifically, for each system he counts the number of
documents retrieved by it, which are also retrieved by a specific number of other systems; in Spo-
erri’s method implementation this number is five. This process is called random grouping. More in
detail, the “structure of overlap” is used to extrapolate two measures: Single% (S% in the follow-
ing), the percentage of a system’s documents not found by other systems, and AllFive% (A%), the
percentage of a system’s documents found by all five systems. A third measure, Single%−AllFive%
(S-A%), is also computed as the arithmetic difference between the two previously found percent-
ages. In his experiments, Spoerri builds the structure of overlap both when considering the top
1,000 documents retrieved by each system and a shallow pool, to study the effect of pool depth on
the effectiveness of his method.

Analyzing these evaluation measures, the author shows that the percentage of a system’s doc-
uments that are only found by it and not by other systems (S%) increases as the system retrieval
quality decreases. For the structure of overlap to be computed, it is critical that a single run for
each system participating in the track is included. In fact, although runs of a system participating
in a track are different, they usually share the same technique and system architecture. Therefore,
the structure of overlap could be affected by this dependence. Furthermore, the author in the ar-
ticle demonstrates that there exists an optimal number of retrieval systems and topics needed for
building the structure of overlap.

In the experimental evaluation, Spoerri selects a subset of the runs submitted to the selected
TREC tracks. Spoerri does not use multiple runs of a system, because these would have very strong
structure of overlap compromising the comparison with the other selected systems. Therefore, for
each participant group he selects one run, called short-run, according to the following criterion:
the short-run is selected considering the one with the highest AP value among the runs that use
automatic as Query Method and Title+Description as Topic Length (i.e., runs that did not use the
Narrative field of the topic). Although the selection of the most effective short-run for each group
allowed to run some experiments to analyze the effectiveness of his approach, it must be noticed
that this kind of selection would be impossible in a real scenario without a pre-evaluation process.

Spoerri’s approach achieves Spearman rS correlation values up to 0.96. However, this value is
not comparable to Wu and Crestani’s, since it is not computed by taking the mean rS over topics,
but as the rS of predicted and real MAP values. The first and third variants (i.e., S% and S-A%) show
the best effectiveness (details will be shown in Table 6). The results are also confirmed by using
other metrics (i.e., P@100 and R@100).

2.4 Other Notable Examples of Evaluation without Relevance Judgments

Other proposals of studies about effectiveness evaluation without relevance judgments exist: for
example, Aslam and Savell (2003)’s work can be exploited, and Nuray and Can (2003) is another
viable alternative. However, in the rest of this article, we will focus on the three above-described
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methods, which are somehow the most classical and well-known approaches. For the sake of com-
pleteness, we briefly describe some other studies that, rather than proposing a novel technique
for ranking IR systems without relevance judgments, are more focused on analyzing causes and
consequences of an automatic evaluation. Nuray and Can (2003) propose a new automatic evalua-
tion technique that estimates the relative ranking of retrieval systems by computing a “popularity
score” for each retrieved document, and then using trec_eval to compute a certain metric, and
compare it to the human-based rankings. Experimental evaluation is performed on a web-like im-
perfect environment, in which all the documents are available at indexing time, but some of them
cannot be accessible at retrieval time, e.g., because of server down issues. Yilmaz and Aslam (2006)
propose new evaluation measures, which estimate the average precision (AP) with incomplete and
imperfect relevance judgments. Hauff and de Jong (2010) compare Soboroff et al.’s approach di-
rectly to two evaluation methods that rely on incomplete manual relevance assessments: statAP

and MTC. Experiments on the TREC’s Million Query Tracks show that Soboroff et al.’s technique
is able to achieve high correlation even in this scenario. Carterette and Soboroff (2010) study the
effect and the robustness of the TREC Million Query track methods when some assessors make
significant and systematic errors; their findings indicate that errors can have a large effect on the
ranking of systems.

3 EXPERIMENTAL SETTING: DATA, METHODS, AND MEASURES

To pursue the aims of this article, namely, to reproduce and then to generalize as well as expand the
above presented results, we run a battery of experiments. In this section, we describe the common
features of those experiments, and in the rest of the article we will provide further details when
needed, and the results.

3.1 Data

For reproducibility purposes, we use the datasets from the TREC4 editions that have been used
by at least one of the previous studies: the Ad Hoc tracks of TREC-3, TREC-5, TREC-6, TREC-7,
TREC-8, and TREC-2001. Furthermore, to extend and generalize such results, we use some more
datasets: besides again TREC-8, also, from other TREC editions, the Robust track of 2004 (R04), the
TeraByte track of 2006 (TB06), and the Ad Hoc Web track of 2014 (WEB14). All the test collections
used in this article are detailed in Table 1.

Concerning R04, we use 249 topics, removing topic 672, as described by Voorhees (2004, Sec-
tion 1): “the TREC 2004 track used a set of 250 topics (one of which was subsequently dropped due
to having no relevant documents).”

Concerning the TeraByte collection, we choose to investigate two versions of the original dataset
(see Büttcher et al. (2006, Section 3.1): “Manual runs used only the 50 new topics; automatic runs
used all 149 topics from 2004-2006”):

—We select the subset of 61 runs that run over all 149 topics, as done by Roitero et al. (2017);
this collection has no manual runs; we denote this dataset as TB06. Specifically, the dataset
uses the 150 track topics and removes topic 703.

—We consider all the participating runs (i.e., 80 runs, including the manual ones) that run
over a common subset of 50 topics; we call this collection TB06M (M denotes the inclusion
of the manual runs).

Concerning WEB14, we choose two different versions of the track to investigate the effect of
the evaluation measures: this approach is detailed in Section 3.2.

For all the other datasets, we use the standard settings proposed in the track.

4See http://trec.nist.gov/.
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Table 1. Test Collections Used for the Reproducibility Experiments in the Upper Part

of the Table, and for the Other Experiments in the Lower Part

Acronym Track Year Topics Runs Used Topics Manual Runs

TREC-3 Ad Hoc 1994 50 40 151-200 11
TREC-5 Ad Hoc 1996 50 61 251-300 31
TREC-6 Ad Hoc 1997 50 74 301-350 17
TREC-7 Ad Hoc 1998 50 103 351-400 17
TREC-8 Ad Hoc 1999 50 129 401-450 13
TREC-01 Ad Hoc 2001 50 97 501-550 2
TREC-8 Ad Hoc 1999 50 129 401-450 13

TB06 TeraByte 2006 149 61 701-850† 0
TB06M TeraByte 2006 50 80 801-850 19

R04 Robust 2004 249 110 301-450, 601-700† 0
WEB14 Web 2014 50 30 251-300 4

†Not all, see text.

Table 2. AP, MAP, and AAP for n Topics and m Systems

(Adapted from Mizzaro and Robertson (2007))

t1 · · · tn MAP
s1 AP(s1, t1) · · · AP(s1, tn ) MAP(s1)
...

...
. . .

...
...

sm AP(sm , t1) · · · AP(sm , tn ) MAP(sm )
AAP AAP(t1) · · · AAP(tn )

3.2 Evaluation Measures

The outcome of the TREC evaluation process can be represented as in Table 2: si represents a
system/run, tj represents a topic, AP(si , tj ) represents the effectiveness of the system si on the topic
tj according to an evaluation measure. AP is perhaps the most widely used metric; however, system
effectiveness can be expressed by means of many other alternative metrics, like logAP, logitAP,
NDCG, and so on. Since systems in TREC usually are required to retrieve 1,000 documents for
each topic, we use the truncated versions of these metrics, e.g., we use AP @1000. To rank retrieval
systems, a common approach is to average the performance over the set of topics according to a
measure (e.g., MAP =Mean AP); thus,

MAP(si ) =
1

n

n∑
j=1

AP(si , tj ). (1)

More in detail, for TREC-8, R04, TB06, and TB06M we use as evaluation measure AP@1000;
the official track measure for TB06 is AP@10.000 (which is very close to AP). We also present
results in terms of GMAP, and logitAP (metrics detailed in Section 5.2). For WEB14 we use the
official track measure NDCG. To present AP values for this dataset as well, we binarize WEB14
qrels. As it is usually done, we attempt two slightly different binarizations: in the first version we
map the original relevance values −2 and 0 into not relevant and the values 1, 2, 3 into relevant;
in the second version, we map the values −2, 0, and 1 into not relevant and the values 2 and 3
into relevant. In the following, we focus on the first binarization only, which incidentally provides
better results in terms of the final correlation obtained. Note that selecting the binarization, which
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Table 3. μ and σ Values: Comparison for Reproducibility (Leftmost Four

Columns) and Estimation (Two Rightmost Columns)

SNC original Our obtained values Estimated

TREC-3
μ σ μ σ μ σ

14.90 .123 10.414 (14.902)† .097 (.123)† 23.15 .110
TREC-5 3.90 .043 3.956 .043 13.39 .074
TREC-6 6.32 .067 6.351 .067 10.13 .062
TREC-7 5.78 .047 5.834 .047 5.82 .046
TREC-8 5.35 .048 5.497 .048 3.60 .038

†Pool built with all the participating runs at depth 100.

leads to higher correlation values, has no consequence in the experiment results since we are not
competing against any baseline. The meaning of AAP (see the last row in Table 2) will be discussed
in Section 6.2.

3.3 Methods Configuration

For brevity, in the following we denote the methods by Soboroff et al. (2001), Wu and Crestani
(2003), and Spoerri (2007) with SNC, WUC, and SPO, respectively.

Considering SNC, we start estimating a probability distribution by randomly selecting relevant
documents from qrels for building pseudo-qrels. First, based on the official qrels we compute the
mean (μ) and the standard deviation (σ ) values of the percentage of relevant documents in the
pool. Table 3 shows on the left side the comparison between SNC and our computed values of μ
and σ (the rightmost column is discussed in the following). Comparing these values with Soboroff
et al.’s, we observe that we are able to reproduce the same μ and σ values, apart from TREC-3. Our
hypotheses is that, in this case, all participating runs have been used, in place of the official runs
only (i.e., the ones that are selected to form the pool),5 and indeed, when using this approach, we
obtain the values in parentheses in the first row of the table, which perfectly match the original
ones. For completeness and for (future) reproducibility, we also report the μ (and σ ) values that we
obtain for R04, TB06, TB06M, and WEB14: 5.12 (0.043), 13.39 (0.074), 8.98 (0.057), and 32.59 (0.145).

Once we have the estimated normal distribution (based on the mean and the standard deviation
values computed before) we can build the pseudo-qrels by simply performing a random sampling
on qrels based on this distribution; then using the official “trec_eval” software (version 9.0)6 we
compute an approximated AP (i.e., obtained with the sampled qrels) value for each run and each
topic. Based on these values, we compared the approximated AP and MAP values (i.e., the ones
originated from the pseudo-qrels) with the real AP and MAP values. To provide a realistic (i.e.,
without any post-evaluation knowledge) setting for Soboroff et al.’s work, we also estimate μ and
σ values using a best-fit interpolation with an order one polynomial trend-line, obtaining

μ =
1133.3

no. runs
− 5.1841,

σ = 0.0037μ + 0.0242.
(2)

The two rightmost columns in Table 3 show the estimated values.
For WUC, we start by computing the so-called document “reference count” for each topic, run,

and position of the rank; then we sum and normalize the reference count to compute the Basic,

5Note that a detailed list of the official runs is not provided by NIST.
6http://trec.nist.gov/trec_eval/.
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V1, V2, V3, and V4 measures according to Wu and Crestani’s definition. We consider all the runs
submitted to the TREC tracks.

For SPO, we start by selecting the systems according to the selection method described in Sec-
tion 2.3. Having the subset of systems, we compute the structure of overlap for all the runs; we
compare then the percentages of overlap given by the structure of overlap with the real MAP
values. As stated before, the structure of overlap is built forming random groupings of five re-
trieval systems and this structure is used to extrapolate S%, A%, and S-A% measures. Based on our
experiments, we observe that by following the proposed selection method (see also Section 2.3)
the Title+Description runs are often not enough to reach the number of runs selected by Spoerri.
Most likely, Spoerri then included in his experiments some runs that have only Description as
Topic Length; we follow this approach.7

To avoid noise and give stability to our results, we performed 20 repetitions for SNC and SPO,
which have a non-deterministic part. In the following, we report the results obtained when aver-
aging the AP and correlation values over the 20 repetitions.

3.4 Correlation Measures

In this article, we focus on reporting correlation values between the official system rank provided
by TREC and the system rank obtained by the automatic evaluation methods. In the three methods
that we reproduce, there is no homogeneity concerning the correlation coefficient used to compare
the computed scores (representing the automatic evaluation of systems) with the real evaluation of
systems (e.g., the real MAP values). Thus, to present the results in a homogeneous way, we report
the correlation values using value- and rank-based correlations, as well as top-heavy correlation
measures. More in detail, we use:

—Pearson’s ρ, which measures linear correlation;
—Kendall’s τ , which measures rank correlation;
—Spearman’s rS , which measures rank correlation;
—Rank Biased Overlap (RBO) (Webber et al. 2010), a parametric rank correlation measure that

is top-heavy, i.e., weights more the first positions of the rank. The rationale is that usually
it is more important to correctly estimate the effectiveness of the top-ranked systems, i.e,
the most effective ones. We choose to give the top 10% of the systems the 75% of the weight
evaluation; thus we estimate the parameter p for RBO as detailed by Webber et al. (2010,
Eq. 21);

—AP correlation (τAP ), proposed by Yilmaz et al. (2008), a top-heavy rank correlation coeffi-
cient based on the AP measure.

We also present the results by means of scatterplots, which allow us to compare the real effec-
tiveness with the effectiveness obtained by the three methods.

It has to be noted that while the SNC method actually predicts an effectiveness (e.g., MAP) value,
the other two methods provide values that have a different meaning: SPO returns a percentage (a
number between 0 and 100) that represents the structure of overlap between systems and WUC
produces a (normalized) reference count value (a value between 0 and +∞). Thus, we normalize
SPO and WUC scores in three ways, as discussed in Section 5.2.1. Furthermore, we change the
sign of the value returned by SPO method, to obtain positive correlations and to easily compare
the results with SNC and WUC.

7To make our run selection process reproducible, we report the runs that we selected in the spreadsheet available at

https://users.dimi.uniud.it/∼kevin.roitero/OUTSIDE/Reproducibility_SI_EvalNoJudg (where we also include all the code

used to carry out our experiments and some additional tables).
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Table 4. Mean and Standard Deviation of τ Values: Comparison for Reproducibility

Original SNC Our obtained values† Orig. SNC dups Our obtained dups† ‡

TREC-3

avg τ std τ avg τ std τ avg τ std τ avg τ std τ

.430 .0312 .401 (.411) .0259 (.0276) .482 .0143 .487 (.471) .0113 (.0111)

TREC-5 .487 .0462 .359 (.382) .0766 (.0279) .571 .0107 .421 (.409) .0067 (.0043)

TREC-6 .408 .0354 .391 (.387) .0370 (.0299) .491 .0131 .458 (.452) .0052 (.0045)

TREC-7 .369 .0363 .377 (.379) .0474 (.0470) .423 .0091 .446 (.446) .0046 (.0046)

TREC-8 .459 .0340 .460 (.444) .0402 (.0567) .543 .0102 .533 (.538) .0043 (.0052)

Original values from Soboroff et al. (2001, Tables 2 and 3) (first and third pair of columns) and our obtained values (second

and fourth pairs of columns).
†The values in parentheses are those obtained with estimated μ and σ (see formula Equation (2) and Table 3).
‡Pool built with all the participating runs at depth 100, using the duplicates.

Table 5. Average rS Correlation over the Topics of Each Collection: Comparison for Reproducibility

Original WUC Our obtained values

TREC-3
Basic V1 V2 V3 V4 RS† Basic V1 V2 V3 V4 RS†

.246 .248 .548 .567 .587 .628 .513 .522 .512 .504 .283 .629
TREC-5 .318 .326 .378 .421 .421 .430 .393 .405 .395 .400 .328 .476
TREC-6 .309 .316 .371 .383 .384 .436 .442 .451 .485 .497 .498 .522
TREC-7 .297 .304 .328 .345 .382 .411 .406 .419 .403 .421 .453 .501
TREC-01 .279 .288 .377 .401 .413 .463 .449 .460 .448 .459 .443 .571

Original values from Wu and Crestani (2003, Table 1) (left) and our obtained values (right).
†SNC, all runs, considering the duplicates and selecting randomly the 10% of the documents as relevant.

4 A1: REPRODUCE

We now turn to our first (and maybe most important) aim A1, namely to reproduce the results
previously published in the literature.

4.1 Results

We first study the reproducibility of each of the three methods, and then address their comparison.

4.1.1 SNC. Table 4 compares the SNC original values of mean τ and standard deviation of τ
with those that we have obtain when reproducing such method. The left side of the table shows
the values obtained considering the pool without duplicates and right side of the table shows the
values when considering duplicates. Remember that we compute the mean τ score obtained over 20
repetitions. As we can see from the table, apart from TREC-5, we obtain mean τ scores comparable
to the ones of SNC, both when duplicates are considered and when they are not. We conjecture
that the differences in the correlation values are caused by the possibility of selecting different
runs to reproduce the original TREC pool.

4.1.2 WUC. Table 5 shows a similar comparison for the WUC method. Here the comparison
is based on the average rS correlation values over the topics of each collection. This is of course
different from SNC: we now focus on reproducing the results, thus we use the same correlation
coefficients used in the original articles; we will provide a homogeneous comparison later. As we
can see from the table, for almost all WUC variants (i.e., Basic, V1, V2, and V3) we obtain higher
correlation values; concerning WUC V4, we obtain higher correlation values in three cases out
of five. In the original article, the highest correlation value is always obtained with the variant
V4; instead, we find that the best variant depends on the collection. Furthermore, in the original
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article, the four variants have increasing correlation values (i.e., for each collection, we always
have Basic < V1 < V2 < V3 < V4); on the contrary, the correlation values that we obtain are
usually comparable across the different WUC variants.

We conjecture that the differences between our values and the original ones might be due to:

—A different normalization score, especially for V4 (i.e., the most effective version in the origi-
nal article). Regarding V4, Wu and Crestani (2003, page 813) state: “V4 consists of using each
document’s normalized score,” but a detailed explanation of the normalization process is
not provided; for this reason we use each system “retrieval status values” (RSV) to compute
each document normalized score. We also consider the rank of the document with simi-
lar (or worse) outcomes. Note that many different normalization formulas could have been
used by original authors; we tried different variants: (i) normalize the RSV/rank in [0, 1], (ii)
normalize the RSV/rank using the standard score (x − μ )/σ ), and (iii) the above normalization
using WUC Basic, V1, V2, or V3 in place of the RSV/rank. We find that none of them leads
to a successful reproducibility of original results. Furthermore, we find it surprising to not
be able to reproduce WUC Basic version, since it does not require any normalization of the
reference count score.

—A different approach used to compute correlations. Wu and Crestani (2003, page 813) state:
“In Table 1 we present the results when all runs of participant systems are taken. Each item
in the table is the mean Spearman rank correlation coefficient over 50 topics of that year.” If
we have a collection with n topics, we denote with AP(ti ) the vector of official AP for all the
runs of topic i (i.e., a column of Table 2), and we use the subscripts o and w to differentiate,
respectively, the official and the WUC measure, then Table 5 shows

1

n

n∑
i=1

rS (APo (ti ),APw (ti )) .

We try different variations, namely:

(i)
1

n

n∑
i=1

rS (APo (ti ),MAPw ) , (ii)
1

n

n∑
i=1

rS (MAPo ,APw (ti )) , and (iii) rS (MAPo ,MAPw ).

None of them lead to an effective reproducibility. We also use our own implementation of
Spearman rank rS correlation, which reflects the formula detailed by Wu and Crestani (2003,
Eq. 4); also in this case the results do not vary from the previous ones, obtained using the
official Python 3 scipy.stats.spearmanr8 implementation.

—The number of runs used to compute the rS correlation score. Although Wu and Crestani
(2003, Tab. 1) state: “Mean correlation coefficient for AP, all systems submitted to TREC,”
we try with a selection of systems. Also this attempt results in a failed reproducibility of
the original scores.

We remark that it is unlikely that by doing something wrong we obtain higher correlation values
than the original ones; one should expect exactly the opposite. We release the code used to compute
WUC scores (see Footnote 7), which could be useful for future reproducibility, and for a correct
implementation of the method described by Wu and Crestani.

Wu and Crestani also reported, for comparison, the rS correlation values that they obtained
when reimplementing SNC (in a slightly different version, i.e., considering the duplicates and se-
lecting randomly the 10% of the documents as relevant). Table 5 shows, in the two RS columns, the

8https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.spearmanr.html.
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Table 6. Average rS Correlation: Comparison for Reproducibility

Orig. SPO Our obtained values Orig. SPO top 50 Our obtained top 50
S% A% S-A% S% A% S-A% S% A% S-A% S% A% S-A%

TREC-3 .67 – .72 .67 .51 .69 .72 – .72 .46 .25 .44
TREC-6 .79 – .78 .69 .40 .68 .86 – .88 .80 .44 .79
TREC-7 .43 – .47 .59 .38 .57 .70 – .62 .67 .35 .63
TREC-8 .89 .88 .95 .79 .48 .76 .92 – .95 .82 .55 .80

Original values from Spoerri (2007, Table 1) (first and third groups of three columns) and our obtained values (second

and fourth groups of three columns). The table shows on the left side the values obtained when using all 1,000 retrieved

documents, and on the right side when using the top 50 ones. S%, A%, and S-A% values computed using one short-run

per participant group (the one with highest MAP score). TREC-3, TREC-6, and TREC-7 correlations are estimated from

Spoerri (2007, Fig. 5).

rS correlation values obtained by Wu and Crestani and by ourselves when we reimplement SNC
following Wu and Crestani variation. We see that, also in this case, the values are in general differ-
ent, apart from TREC-3 and TREC-5. Referring to Table 4, recall that our τ correlation values are
similar to SNC original ones. This might depend, again, on one of the justifications detailed above.

4.1.3 SPO. Table 6 shows the SPO S%, A%, and S-A% scores obtained by Spoerri and by our-
selves when considering one run (the short-run) per participant group; the table shows correla-
tion values (averaged over the N random grouping of N short-runs) when considering all 1,000
retrieved documents (left) and only the top 50 retrieved (right). For completeness, the table also
contains all our A% values, not always reported in the original article. We see that our computed
values, for both top 50 and top 1,000, are comparable to Spoerri’s, even if they are usually lower;
there are two exceptions though: TREC-7 top 1,000 and TREC-3 top 50.

The differences between the correlation values might depend on two different factors: (i) the
division of systems into the sets containing five systems is not trivial, and the implemented algo-
rithm can affect the final result, and (ii) the selection of which run to include from each participat-
ing group has a major impact on the correlation values, and a list of the used runs is not available
in the original article (we make available our list in the URL provided in Footnote 7).

Another important remark is that in the original work the version with the highest correlation
value is S-A% for almost all collections, but according to our finding this is not always the case,
especially when considering the top-50 rank positions.

4.1.4 Comparison of SNC, WUC, and SPO. As we have already noticed in Section 2, and as it
is clear from the last three tables, the correlation values reported in the original articles are not
directly comparable. To be able to compare in a more systematic and convenient way the three
methods, in Table 7 we show the τ correlation obtained by us when reproducing the methods
considering all the runs participating in the track and the top 1,000 documents retrieved for each
topic. As we can see from the table, SNC dups always achieves the highest correlation values. This
might be surprising, since it is the most trivial method.

Figure 1 shows some selected results as scatter plots: the x-axis shows the real MAP value, while
the y-axis shows the score of the SNC, SPO, and WUC methods; each dot is a system; and automatic
and manual runs are graphically different. In the plots, we also display the regression line as well
as ρ, τ , rS , RBO, and τAP measures. Note that the correlation values are minimally different from
the ones in Table 7; the table shows the average correlation obtained over the 20 repetitions, the
figure shows instead the plot and the corresponding correlation values where each (M)AP is the
average (M)AP obtained over the 20 repetitions.
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Table 7. MAP Comparison between All State-of-the-Art Used Collections

and All Methods Using τ Correlation

SNC WUC SPO

TREC-3
qrel dups Basic V1 V2 V3 V4 S% A% S-A%
.401 .486 .405 .405 .436 .444 .344 .416 .216 .400

TREC-5 .359 .422 .332 .341 .336 .338 .355 .359 .215 .352
TREC-6 .391 .459 .422 .427 .451 .448 .453 .421 .288 .421
TREC-7 .378 .445 .402 .408 .393 .408 .430 .358 .216 .346

TREC-8 .460† .532 .466 .480 .386 .391† .322 .490† .322 .475
TREC-01 .473 .625 .537 .545 .582 .582 .554 .521 .347 .520

We considered all the runs for each track, and the top 1,000 retrieved documents. The highest values for

each collection are in bold.
†Shown in Figure 1 (see below).

Fig. 1. Scatterplots for the three methods: SNC (left), WUC V3 (center), and SPO S% (right), on the TREC-8

collection. Each dot is a system/run. The x-axis shows the real MAP value; the y-axis shows the predicted

MAP (for SNC) or a meaningful value of the specific method, i.e., a (normalized) count for WUC and a

(negated) percentage for SPO.

For WUC and SPO, we selected the method variants featuring the best results, i.e., those having
highest Kendall’s correlation (V3 and S%, respectively). The V4 version of WUC and S-A% version
of SPO have a very similar outcome. In the following, we report the WUC V3 and V4, and the SPO
S%: they are almost always the best ones; when they are not the absolute best, they are very close
to the best or even indistinguishable. An exhaustive appendix of our results can be found at the
URL provided in Footnote 7.

Figure 1 shows that all three methods present an “inverse U” shape (less evident for SPO): all
the methods fail in predicting the effectiveness of the most effective systems, which in this case
(for TREC-8) are manual runs; we analyze the effect of the manual runs in Section 5.1; we can see
that the methods are equally bad in predicting the top-ranked systems by the values of τAP and
RBO, which are very similar for the three methods.

4.2 Discussion

Considering the results, we can make two main remarks:

(i) On reproducing, per se: reproducing the work is never easy, with all the methods (i.e., SNC,
WUC, and SPO), for many different reasons: specific choices are often not described in the
original articles, like the choice of including a system instead of another to form a subset
of systems/run (see Sections 3.3 and 4.1); when the method includes a nondeterministic
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process, an exact reproducibility is not possible. Furthermore, SNC is the only method
which produces estimated AP values, the other ones produce a score, which can be of
difficult interpretation.

(ii) On the results, the rather low correlation values, as well as the inverse U shape that can be
seen in Figure 1, seem to discourage the use and further development of these approaches.

To investigate this latter remark, we generalize the three methods to other collections, other
evaluation metrics, and a shallow pool, which we discuss next.

5 A2: GENERALIZE

We now turn to the second aim A2; more precisely, we generalize the previous work results to other
test collections (Section 5.1), other evaluation metrics (Section 5.2), and a shallow pool (Section 5.3).
We also briefly discuss these results (Section 5.4).

Before detailing the results, we make some remarks on generalizing the three methods: (i) SPO
and WUC do not estimate AP values, thus we have to normalize the produced scores, which can be
done in many different ways, as we discuss next; (ii) all WUC versions are calibrated considering
the top 1,000 documents retrieved by each system, thus using other pool depths with WUC is
not trivial; and (iii) SNC requires an estimation of the μ and σ parameters: in the case of a new
collection, these parameters can be estimated using different techniques, which may condition the
effectiveness of this method. Furthermore, while SPO and WUC can in principle work for any
relevance scale, SNC is restricted to the binary relevance scale.

5.1 A2a: Generalize to Other Collections

To generalize the results to other collections, we choose different TREC editions featuring a differ-
ent number of systems/runs and of topics (see Table 1): TB06, TB06M, R04, and WEB14. Results on
these other collections are shown in Figure 2. The charts in Figure 2 are organized by rows (each
row represents a collection: TB06, TB06M, R04, and WEB14, respectively), and by columns (each
column represents a different method: SNC, WUC, and SPO, respectively).

From the whole Figure 2 we notice that, on these collections, the correlations are usually higher
for the SNC and WUC methods, whereas they are always lower for SPO. Furthermore, the three
methods do not show a consistent behavior across various datasets: by comparing Figure 1 with
Figure 2, and the rows of Figure 2 (i.e., considering different datasets but the same method), we
notice that the performance of a single method is highly dependent on the particular dataset. On
the contrary, the three methods are consistent within each dataset.

From the figure, we also see that the most effective systems are not penalized as they were in
Figure 1: the inverse U shape of TREC-8 does not occur anymore. This is true for SNC and WUC,
while SPO still penalizes the best systems, although in a less evident way. This behavior can be
caused by the fact that, for TREC-8, the most effective systems are the manual runs, which are
peculiar systems; in fact, the inverse U shape disappears if we imagine to remove all the manual
runs from Figure 1. If we focus on the manual runs of TB06M and WEB14, their performance is
still underestimated by the three methods, but, different from TREC-8, their computed score for
the three methods is not similar (i.e., they do not “cluster” as in TREC-8); this can be caused by the
fact that for TB06M and WEB14, the manual runs are not the most effective.

This hints that the three methods for effectiveness evaluation without relevance judgments,
rather than failing in predicting the most effective systems, fail in providing a correct prediction
of the effectiveness of manual systems. Also taking into account the work by Aslam and Savell
(2003), this is probably due to the manual systems being “unpopular,” both because they are
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Fig. 2. Generalization to other collections. Scatterplots for the three methods SNC, WUC V3 (or V4), and

SPO S% (on the first, second, and third columns, respectively) and four collections TB06, TB06M, R04, and

WEB14 (on the first, second, third, and fourth rows, respectively). Compare with Figure 1.
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intrinsically different from the automatic ones and because there are many more automatic than
manual systems in each TREC edition (see Table 1).

5.2 A2b: Generalize to Other Evaluation Metrics

We now turn to Aim A2b: generalize to other evaluation metrics; more precisely, we generalize
previous results to the GMAP (Section 5.2.1), logitAP (Section 5.2.2), and NDCG (Section 5.2.3)
metrics.

5.2.1 GMAP. Geometric Mean Average Precision (GMAP), proposed by Robertson (2006), is
the geometric mean of the AP values over the set of topics. Using the same notation as in Table 2
and in formula Equation (1):

GMAP(si ) = n

√√
n∏

j=1

AP(si , tj ) = exp
��
�

1

n

n∑
j=1

ln(AP(si , tj ))
��
�
, (3)

where we use the natural logarithm (ln) and its inverse function (exp), and AP values of zero need
to be replaced by a small ϵ value of 10−5 as done by Robertson. Even though the GMAP measure
averages the system effectiveness over all the topics as MAP does (see formula Equation (1)), GMAP
gives emphasis on the low values of the effectiveness measure (i.e., the bottom of the scale for an
effectiveness measure). To better explain the concept, we report an example taken from Robertson
(2006, page 81):

GMAP treats a change in AP from 0.05 to 0.1 as having the same value as a change
from 0.25 to 0.5. MAP would equate the former with a change from 0.25 to 0.3,
regarding a change from 0.25 to 0.5 as five times larger.

Furthermore, as discussed by Fuhr (2017), when a researcher is interested in measuring relative
changes, GMAP should be used; when absolute changes are studied, MAP should be used.

To compute the GMAP values, we tried different normalizations of the WUC and SPO scores:
scores normalized in [0, 1], scores normalized in [0, 0.5] (since the AP scores are often in that
range), scores normalized in [mini, j (AP(si , tj )),maxi, j (AP(si , tj ))], and no normalization at all. To
normalize the scores, first we transform the AP values into log AP scores; then, we normalize
those scores per-collection; e.g., to normalize in [0, 1] we consider the min and max value of the
collection, (i.e., max and min values of Table 2, all runs and topics together); finally, we average
the results over the set of topics. Results are all very similar, and in the following we use the first
normalization.

Results of the generalization to the GMAP measure are shown in Table 8. By comparing the
table to Figures 1 and 2, no qualitative differences emerge.

5.2.2 logitAP. logitAP is similar to GMAP, but operates using the logistic transformation of AP
values. We compute logitAP as done by Robertson (2006):

logitAP(si , tj ) = ln

(
AP(si , tj )

1 − AP(si , tj )

)
.

Here again we use the natural logarithm and AP values of zero (and one) need to be replaced
by a small ϵ value of 10−5 (and 1 − 10−5), as done by Robertson. Using Robertson’s words (2006,
page 132):

Like the log transform, or equivalently like using the geometric mean GMAP, this
pays attention to hard topics in a way that ordinary MAP does not.
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Table 8. Generalization to Other Metrics: GMAP

SNC WUC V3 SPO S%

ρ τ rS RBO τAP ρ τ rS RBO τAP ρ τ rS RBO τAP

TREC-8 .50 .52 .63 .46 .43 .48 .45 .57 .68 .32 .69 .55 .68 .73 .41

TB06 .88 .51 .67 .76 .37 .87 .46 .62 .75 .31 .84 .43 .59 .72 .30

TB06M .79 .49 .66 .77 .34 .78 .42 .58 .67 .26 .73 .40 .56 .63 .27

R04 .88 .71 .88 .85 .53 .81 .65 .83 .83 .52 .63 .48 .66 .43 .34

WEB14 .93 .74 .89 .66 .70 .73 .54 .75 .51 .35 .35# .09# .19# .49 −.10

Correlations of Pearson’s ρ , Kendall’s τ , Spearman’s rS , Rank Biased Overlap (RBO), and τAP for the three methods SNC,

WUC V3, and SPO S% on the TREC-8, TB06, TB06M, R04, and WEB14 collections, for the GMAP metric. Compare with

Figures 1 and 2.
#p > 0.05.

All the other values have p < 0.01.

Table 9. Generalization to Other Metrics: logitAP

SNC WUC V3 SPO S%

ρ τ rS RBO τAP ρ τ rS RBO τAP ρ τ rS RBO τAP

TREC-8 .34 .52 .63 .46 .42 .33 .42 .55 .69 .30 .58 .55 .69 .71 .43

TB06 .83 .51 .67 .76 .33 .84 .49 .65 .75 .33 .61 .42 .59 .69 .27

TB06M .74 .51 .68 .77 .37 .67 .42 .57 .66 .26 .55 .43 .59 .61 .26

R04 .85 .71 .88 .84 .53 .82 .64 .82 .81 .50 .37 .30 .37 .32 .15

WEB14 .94 .75 .90 .66 .69 .71 .49 .68 .51 .39 .47 .14# .21# .49 −.05

Table for the correlations of Pearson’s ρ , Kendall’s τ , Spearman’s rS , and Rank Biased Overlap (RBO), for the three

methods SNC, WUC V3, and SPO S% on the TREC-8, TB06, TB06M, R04, and WEB14 collections, for the logitAP metric.

Compare with Figures 1 and 2 and with Table 8.
#p > 0.05.

All the other values have p < 0.01.

Results of the generalization to the logitAP measure are shown in Table 9. To compute the log-
itAP values, we normalized the WUC e SPO scores as done for the GMAP values: in this case, the
normalization makes a difference, and performing no normalization at all leads to lower correlation
values. The correlation values for SNC are almost identical to the ones obtained for GMAP (Ta-
ble 8); the correlation values for WUC are comparable, especially when considering top-heavy cor-
relation measures (RBO, and τAP ); the correlation values for SPO are more different, even though
the similarity is still high when considering top-heavy correlation measures.

When comparing GMAP (Table 8), logitAP (Table 9), and the correlation values of Figure 2, no
significant differences emerge.

5.2.3 NDCG. To generalize previous results to the NDCG metric we used the official NDCG@20
measure for the WEB14 collection. Results are shown in Figure 3. When we compare Figure 3 to
Tables 8 (GMAP) and 9 (logitAP) as well as Figures 1 and 2 (TREC-8, R04, TB06, and WEB14 AP),
we notice two visible differences: the correlation values are lower and the inverse U shape is not
present. The most effective systems are not penalized, but in this case the correlation is more
scattered. This behavior can be caused by the fact that having more than one relevance value (i.e.,
from 0 to 3), the error that can be made with a random assessment is much higher: for example,
imagine a not relevant document (i.e., 0) assessed as highly relevant (i.e., 3) or vice versa.
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Fig. 3. Generalization to other metrics: NDCG. Scatterplots for the three methods SNC, WUC V3, SPO S%

from left to right on the WEB14 collection, for the NDCG metric. Compare with Figures 1 and 2 and Tables 8

and 9.

Table 10. Generalization to a Shallow Pool: AP@20

SNC† WUC V3 SPO S%

ρ τ rS RBO τAP ρ τ rS RBO τAP ρ τ rS RBO τAP

TREC-8 .55 .44 .56 .58 .34 .70 .46 .60 .66 .33 .71 .47 .62 .72 .34

TB06 .78 .29 .43 .60 .14 .83 .36 .52 .86 .21 .82 .34 .49 .83 .16

R04 .78 .51 .70 .74 .29 .90 .65 .82 .79 .45 .90 .65 .82 .80 .42

WEB14 .53 .43 .56 .88 .28 .83 .59 .74 .92 .36 .80 .49 .64 .93 .27

Table for the correlations of Pearson’s ρ , Kendall’s τ , Spearman’s rS , Rank Biased Overlap (RBO), and τAP for the three

methods SNC, WUC V3, and SPO S% on the TREC-8, TB06, TB06M, R04, and WEB14 collections.
†All runs.

All the values have p < 0.01.

5.3 A2c: Generalize to a Shallow Pool

Since results from Section 5.2.3 are obtained with both a new metric (NDCG) and a shallow pool
(20), we computed the results when considering the standard MAP metric with a shallow pool at
depth 20 (i.e., AP@20). Table 10 shows the results. Comparing these results with the ones obtained
considering the top 1,000 documents retrieved, we can see that the linear and rank correlations (i.e.,
ρ, τ , and rS ) are generally lower for SNC, and higher or comparable for WUC (except for WEB14)
as well as for SPO. This can be caused by the fact that a shallow pool results in low-quality qrels,
which penalize SNC; on the contrary, WUC e SPO measures appear to be stable, probably because
the top-ranked documents are more informative for providing an accurate final ranking of systems.
For SPO, it is worth noticing that, for R04 and WEB14, the correlations obtained are significantly
higher than the correlations obtained when considering all (i.e., 1,000) documents retrieved. When
considering top-heavy correlations (i.e., RBO and τAP ), we notice that RBO values are generally
comparable with the values obtained when considering the full set of documents, except, again,
for WEB14 SNC and WUC V3 methods. The particular behavior of WEB14 can be explained by the
fact that such a dataset is known to be rather incomplete due to shallow pools and low number
of participants (Lu et al. 2016). Thus, our results suggest that considering a shallow pool does not
penalize the SNC ranking of the most effective systems, which we might have supposed at first
when considering linear and rank correlation values. When considering τAP correlations, we see
that they are usually higher or comparable to the values obtained when considering the full set of
documents, confirming previous findings.
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5.4 Discussion

Considering all generalization experiments, we can make two general remarks. First, with the other
collections TB06, TB06M, R04, and WEB14, correlation values are higher than TREC-8, and the
inverse U shape that was very clear in TREC-8 (see Figure 1) disappears on the other collections: the
automatic evaluation process can obtain a reasonable rank of IR systems in a completely automatic
way. Second, although the choice of the metric can potentially impact the outcome of the methods
for automatic evaluation of IR systems, this impact is clear only when using NDCG, i.e., a metric
based on a different relevance scale (from binary to four levels).

We can also make some more specific remarks.
One issue that is worth considering in reproducibility is the choice of using the whole dataset

or not (Ferro 2017; Ferro et al. 2016). In TREC result analysis, the choice is whether to use all of the
dataset or only the top 75% of the most effective systems, as it is commonly done in the analysis
of TREC data, see for example Voorhees and Buckley (2002). The comparison between the results
restricting or not to the top 75% of most effective systems shows that there is no effect for the SNC
method, while in general to consider the top 75% of runs leads to lower correlation values for the
other two methods, i.e., SPO and WUC.

Another interesting issue concerning reproducibility is whether to distinguish between systems
that retrieve all the documents for all the topics (e.g., 1,000 for each topic) or not. For all the
analyzed collections, there are systems that do not retrieve all the documents for all the topics: an
example is system READWARE for TREC-8. The result of including or not such systems depends
on the method. For the SNC method, this corresponds simply to remove some points (i.e., systems)
in the scatterplots. For the other two methods, i.e., SPO and WUC, the effect is twofold: some
points are removed from the scatterplots, as well as the structure of overlap for SPO and the count
value for WUC are recomputed; this results in lower correlation values for SPO and WUC. This
is related to the well-known fact that “The quality of the pools is significantly enhanced by the
presence of the recall oriented manual runs” (Voorhees and Harman 2000, page 8) that remarks
the peculiarity and the effect of some runs that may do not retrieve all the documents for all the
topics.

Finally, SNC is the only method which gives AP values so is the only one which can be gener-
alized naturally, whereas WUC and SPO require normalizations that introduce some arbitrariness
in the process.

6 A3: EXTEND

We now turn to the last aim of this article, A3, and address two novel research questions that,
although they arise in a quite natural way in the context of this research, have been neglected so far.

6.1 A3a: Semi-Automatic Approaches

A research question that in our opinion is quite natural is what happens when a part of the evalua-
tion is automatic and a part of it is manual, i.e., based on human relevance assessments (Aim A3a).
In other terms, what happens when some values in the AP matrix of Table 2 are artificial, i.e.,
obtained by one of the three methods, and some others are real, i.e., obtained by means of human
relevance assessments? In this section we focus on this issue.

6.1.1 Injecting Columns. We assume to work atomically on the topics: we do not work on in-
dividual cells of the AP matrix of Table 2 but on its columns, i.e. (since each column corresponds
to a topic), on individual topics. We select some columns from the real matrix, and some others
from the artificial one, i.e., we are downsampling the topics. Note that besides downsampling the
topics in this manner, other alternative approaches could have been used. One might for instance
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randomly sample the assessments. On the one hand, this is a convenient working assumption (and
in future work we do plan to discuss the possible alternative downsampling approaches); on the
other hand, however, this is also a reasonable strategy, since assessing the relevance of another
document for the same topic costs less than assessing the relevance of a document for a new topic.

Therefore, instead of using all the n columns of the artificial matrix only, we use a ≤ n columns
from that matrix, andb = n − a columns from the original real matrix. Theb columns are “injected”
into the artificial matrix, and the MAP value is computed accordingly. In other terms, injecting
means to fully evaluate, with human relevance assessments, specific topics.

The b columns, or topics, to be injected can be selected in many ways. If the selection criterion
of theb columns does not depend on the real AP matrix, then this would correspond to a procedure
that can be applied in practice: the artificial AP matrix is built completely automatically and, still
in a completely automatic way (before any human relevance assessment takes place), some topics
are selected to be injected (i.e., manually evaluated, by means of human relevance assessments).
Conversely, if the selection criterion of the b columns depends on the real AP matrix, then this
would be useless in a practical evaluation setting, since the full results of the evaluation would
be needed to do the selection according to such a criterion. However, it might also be interesting
to study this case, as hidden properties of topics and evaluation in general might be revealed. Of
course it would be possible to imagine also mixed or approximated selection criteria, or even to
add real columns (maybe approximated to a pool depth) rather than using them to replace the
artificial ones; we leave that for future work.

We take into account the following theoretical selection criteria:

(T1) Select the topics having higher (and lower as well) correlation between real AP and
artificial AP. This means that we are injecting the real columns that are more (less) sim-
ilar to the artificial ones. Although it can be expected that injecting the most similar
columns will have a smaller effect than the less similar ones, this needs to be verified
experimentally.

(T2) Select the topics having higher (lower) correlation between real AP and real MAP. This
means that we are selecting the topics whose real columns are individually most (least)
similar to the real MAP values, i.e., those individual topics that somehow better (worse)
resemble the overall real evaluation. Those are the topics that provide a most (least)
similar final ranking of IR systems, and that might be most (least) important to evaluate
in an accurate way.

(T3) Select the topics having higher (lower) correlation between artificial AP and real MAP.
This means that we are selecting the topics whose artificial columns are individually
most (least) similar to the real MAP values, i.e., those topics that somehow, in the arti-
ficial evaluation, better (worse) resemble the overall real evaluation. Similar to the first
criterion T1, injecting more similar columns is likely to have a smaller effect than a less
similar one (replacing the latter would mean to “correct the errors” made by the auto-
matic evaluation).

(T4) Select the Best (and Worst as well) possible columns according to the BestSub method
presented by Guiver et al. (2009) on the real matrix. Guiver et al. described how to find
“a few good (bad) topics,” i.e., the topic subset of a given cardinality that evaluates the
systems in the most (least) similar way to the full set of topics. This method would pro-
vide for any cardinality a subset of topics to be injected that, in the real matrix, better
(worse) resemble the overall real evaluation. Different from the previous criteria, this
works on topic sets rather than individual topics, thus, it can be expected to work better
than previous methods. Also this conjecture needs to be verified experimentally.
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(T5) Select the Best (Worst) possible column according to the HITS method of Robertson
(2011) on the real matrix. This method computes for each topic its hubness, a measure
of how much the topic is able to predict system effectiveness.

Furthermore, we take into account the following practical selection criteria:

(P1) Select the topics randomly (repeating the experiment to avoid noise—we use 1,000 rep-
etitions in the following).

(P2) Select the topics having higher (lower) correlation between artificial AP and artificial
MAP. This means that we are injecting the artificial columns that are more (less) similar
to the artificial MAP values, i.e., those individual topics that somehow better (worse)
resemble the overall artificial evaluation.

(P3) Select the Best (Worst) possible columns according to the BestSub method on the artificial
matrix.

(P4) Select the Best (Worst) possible column according to the HITS method, i.e., computing
its hubness, on the artificial matrix.

Note that P2, P3, and P4 correspond to T3, T4, and T5 respectively, but the former ones can be
used in practice. Furthermore, P1 (i.e., sample topics randomly) can be seen as a baseline both for
theoretical and practical approaches.

Before turning to the results, we remark that with these experiments we are investigating two
related but different things:

—It seems intuitive that by injecting real/correct values (i.e., substituting an SNC/SPO/WUC
artificial column with a real one) all the three methods will be improved. Besides verifying
this, we also study which is the column selection method that provides the best results (i.e.,
increases most the correlation values with the ground truth, that is the real MAP value).

—It is unclear whether any of the three methods can be exploited to improve the BestSub
topic selection method by Guiver et al.. That is, by computing MAP values using not only
the “few good topics” subset (i.e., just a few columns of the AP matrix), but using a complete
matrix with the real AP values for the best topic subsets and the artificial AP values for the
other topics, do we get a system evaluation/ranking that correlates better to the real MAP
value computed using the full real matrix?

In addition, with the practical experiments, we are investigating whether a practical semi-
automatic evaluation is possible; and in the case of an affirmative answer, which is the best se-
lection criterion that should be adopted.

6.1.2 Results. We report results for SNC only in this section; the results for the other two meth-
ods are generally worse (even despite the normalization attempts), probably because SNC is the
only one that predicts the actual AP values, and during the injection process this is probably crit-
ical. We leave further analyses of the other methods to future work, as well as a complete anal-
ysis of the variability across datasets. Figure 4 displays the result for SNC for TREC-8 and R04.
We report the results by showing the same correlation charts used in the state-of-the-art work
on topic set reduction, see for example Berto et al. (2013), Guiver et al. (2009), and Robertson
(2011): the charts in the figure show on the x-axis the number of columns injected from the real
table, and on the y-axis the τ correlation values between the MAP obtained using the matrix com-
posed by artificial and injected real topics, and the real MAP obtained using the full set of real
topics.
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Fig. 4. Correlation curves, SNC for TREC-8 ((a) and (c)) and R04 ((b) and (d)), for the theoretical approaches

T4 and T5 plus the random injection P1 ((a) and (b)), and the practical ones P3 and P4 ((c) and (d)); the

horizontal black dotted line is the Kendall’s correlation value for SNC method without injecting any column.

The series represent:

—The Best/Worst series obtained by running Guiver et al.’s BestSub method on the original
matrix, as well as the Average series, obtained by selecting topic subsets randomly (using
1,000 repetitions). These series are represented by the dashed lines in the plot. Note that
in this case MAP is computed on a subset of topics, and not on a set composed of real and
artificial topics, as it is for the other series.

—The result of injecting topics/columns randomly, i.e., P1. This represents what happens
when injecting topics without any strategy, thus it can be considered as a baseline.

—The result of injecting the Best/Worst possible columns according to BestSub computed
on the real matrix, i.e., T4 (in Figure 4(a) and (b)), or on the artificial matrix, i.e., P3 (in
Figure 4(c) and (d)).

—The result of injecting the Best/Worst possible column according to the HITS analysis com-
puted on the on the real matrix, i.e., T5 (in Figure 4(a) and (b)), or on the artificial matrix,
i.e., P4 (in Figure 4(c) and (d)).

The T1, T2, and T3 selection methods are not shown in the charts, since they have a similar be-
havior to the random topic injection.
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Results of Figure 4(a) and (b) concern the theoretical selection criteria and show that:

—Perhaps surprisingly, the Best series are not improved by the topic injection, even when
considering the theoretical Best possible columns (T4). This is valid on both datasets, and
more evident in R04. Therefore, it is better to evaluate on a small subset of a few good
topics rather than on a larger topic set obtained adding artificial SNC columns. Looking at
injecting the Worst series, we remark that it does not decrease the correlation obtained by
Worst BestSub.

—Although injecting random topics is a practical selection criterion (P1), it is shown in the
charts in Figure 4(a) and (b) (also for a clearer graphical representation). Let us remark here
that it does improve slightly the average subset of topics: injecting randomly is better than
using a random subset of topics.

—Even though injecting the Best columns (T4) does not improve BestSub, the series are always
well above the average series. Conversely, the Worst stays well below.

—The highest/lowest hubness selection criteria (T5), even if computed on the real topics, does
not improve the random topic selection on TREC-8, at least not until the cardinality is higher
than 20. Also for R04 the lowest hubness topic set is always well below the average, and
up to cardinality 100 even below the horizontal dotted line: injecting low hubness topics is
useless and, at least on R04, is even worse than not injecting topics at all. On the contrary,
on R04 the highest hubness series is always above the average series for cardinalities up to
75, and it is even comparable to the BestSub selection criteria T4 for the low cardinalities.

Figure 4(c) and (d) concern the corresponding practical selection criteria and show that:

—All the practical selection methods improve the artificial-only evaluation: there is almost
no dot below the dotted line. This means that in the case of a semi-automatic evaluation,
using practical approaches is always useful.

—As already mentioned, and shown in the Figure 4(a) and (b) charts, SNC does improve the
Average BestSub series, although to a small extent: injecting topics, even randomly (P1), is
still better than not injecting at all.

—The injection method does matter. Concerning P3, at low cardinalities the Best BestSub
series tend to stay above random topic injection, and Worst BestSub series obtain almost
always lower level of correlation than the random topic injection, for both datasets. Con-
cerning P4, low hubness topics obtain almost always lower correlation values of both the
random series and the random topic injection; on the contrary this is not true for the highest
hubness topic, especially for the TREC-8 dataset.

—P2, not shown in the charts, has similar behavior to the random topic injection.

On a related issue, one might wonder what happens when combining automatic evaluation (we
focus on SNC only in this analysis) with using fewer topics. In more detail, one could compare:

(i) the correlation between the real MAP and the SNC MAP, i.e., the MAP obtained averag-
ing all the artificial AP values obtained by SNC (this is the the horizontal dotted line in
Figure 4); with

(ii) the correlation between the real MAP and a “reduced” SNC MAP, i.e., a MAP obtained
by considering only a limited number of topics and averaging only the corresponding
artificial AP values obtained by SNC.

In other terms, one would use all the topics to run SNC, but then selects a subset of them to compute
the artificial MAP. One might expect that when using fewer topics, the obtained correlation is
lower that using all the topics; however, of course the selection can be done in different ways,
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Fig. 5. Correlation curves, SNC for TREC-8 (a) and R04 (b). The horizontal black dotted line is the Kendall’s

correlation value for SNC method without injecting any column. The other curves are obtained by using

only a subset of topics (artificial AP values) to compute the correlation with the real MAP.

and an optimal selection of the best topics might lead to better results. We experiment with the
selection criteria used above: random selection, the best and worst as found by BestSub, and high
and low hubness.

Figure 5 shows the results, again on TREC-8 and R04: when using most selection methods, a
subset of topics is always less effective than the whole set. However, when using the best subset of
a few topics found by BestSub, the obtained correlation is higher than when using all topics. This
is clearly the case for TREC-8 in the cardinality range 6–44, and it is less clear cut for R04, where
anyway the subset of best topics is never worse than the full set.

Summarizing, our results indicate that, when the ground truth (i.e., the real AP matrix) is avail-
able, injecting topics does not help to improve the few good topics approach suggested by Guiver
et al. (2009); this holds for any topic selection criterion we have tried. On the contrary, in the case of
a semi-automatic evaluation, the Best columns selected from running the BestSub method on SNC
matrix (P3) resemble the overall real evaluation better than not injecting topics at all, or injecting
topics randomly.

These results show that there are some patterns in semi-automatic evaluation that are worth
studying. Not only semi-automatic evaluation clearly improves the automatic only evaluation;
although we have presented a limited sample of the results, it is clear that there are also important
practical consequences. For example, looking at the cardinalities 10 for TREC-8 and 50 for R04 in
Figure 4(c) and (d), we see that a quite high Kendall’s τ correlations in the 0.8–0.9 range in system
rankings can be obtained by using the SNC automatic evaluation method and “augmenting” it with
the evaluation of only about 20% of the topics. This would be a practical approach to decrease the
costs and resources in a test collection evaluation exercise. This needs to be further studied in
future work. The results shown in Figure 5 hint at some promising future research directions as
well.

6.2 A3b: Predicting Topic Difficulty

Another, last, very natural research question to be asked in this scenario is whether it is possible
to automatically predict not only system effectiveness but also topic difficulty (see Aim A3b). First
we discuss the problem in more detail, then we provide some background on the related issue
of query difficulty prediction, then we present some more detailed motivations, and, finally, we
describe our experiments and results.
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6.2.1 From System Effectiveness to the Dual Problem of Topic Ease. In our context, automatically
estimating topic ease corresponds to a sort of dual problem to estimating system effectiveness. To
see why, let us go back to Table 2 and formula Equation (1). We can notice that while MAP repre-
sents a measure of system effectiveness, a dual measure of topic ease can be defined as proposed
by Mizzaro and Robertson (2007):

AAP(tj ) =
1

m

m∑
i=1

AP(si , tj ) (4)

(AAP stands for Average AP). Simply, in place of averaging the rows, one can average the columns.
Thus, in our context, we are now asking if the three methods can be used to predict not MAP

of systems but rather AAP of topics. Although this seems a very natural research issue, it has not
been addressed in the three studies that we have discussed at length so far, and by nobody else.
Furthermore, the importance of this problem can be better understood by considering the related
problem of query difficulty prediction.

6.2.2 Background on Predicting Query Difficulty. Predicting query difficulty is an important re-
search issue. The knowledge that a query is going to be difficult might be exploited by a system, that
could adopt appropriate countermeasures. The Reliable Information Access Workshop (Harman
and Buckley 2004, 2009) has been the first large-scale study aimed at understanding query variabil-
ity and difficulty. The many approaches that have been developed can be classified as pre-retrieval
and post retrieval, depending on when the prediction takes place. The pre-retrieval approaches
(Carmel and Yom-Tov 2010; Hauff et al. 2008; Sparck Jones 1988) are more practical, but the corre-
lation of the predicted query difficulty with the ground truth is rather weak. Pre-retrieval methods
can be based on statistical or linguistic approaches (Mothe and Tanguy 2005); some results on
combining pre-retrieval techniques can be found in the work by Bashir (2014).

The post-retrieval approaches exploit the results of a retrieval phase, and tend to provide slightly
higher correlations with the ground truth, but they are less practical. Some works using post-
retrieval features can be found in the work by Shtok et al. (2012). Carmel and Yom-Tov (2010) dis-
cuss post-retrieval prediction methods using various measures like clarity, robustness, and score
distribution analysis. Pre- and post-retrieval approaches can be combined in various ways, as de-
tailed by Carmel and Yom-Tov (2010), that also provide a complete review of estimating topic
difficulty as well as propose a general model for query difficulty together with some practical
applications.

Other approaches have been tested. For example, Chifu et al. (2017) and Mizzaro and Mothe
(2016) use human prediction (crowdsourcing) in predicting topic difficulty. Buckley (2004) proposes
a measure (called AnchorMap) to compute similarity between ranked document lists retrieved by
systems; this measure allows a categorization of topics into easy and difficult ones.

It is important to remark that, although query difficulty prediction is an interesting research
issue, the state-of-the-art is such that no satisfying solution is available yet: when measuring the
correlation between predicted and actual difficulty, the best methods reach Pearson correlation
values around 0.5 (Carmel and Yom-Tov 2010; Zhao et al. 2008).

6.2.3 Topic Ease + Query Difficulty = Topic Difficulty. The previous brief analysis of the litera-
ture on query difficulty highlights that the important issue is topic difficulty, not ease: it is impor-
tant to understand which are the difficult topics (on which the current systems can be improved),
rather than the easy topics (on which the state of the art is already satisfactory).

We also need to understand that topic and query difficulty, although related, are different. In
query difficulty prediction, usually the AP of a single system is being predicted, rather than the
AAP over a set of systems. However, the AAP measure is an interesting alternative (Mizzaro and
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Fig. 6. AAP scatterplots for some methods and collections as indicated. Different from previous scatterplots,

here each dot is a topic. In the bottom right scatterplot, GAAP is used in place of AAP and, here and in the

following, GAAP values have been normalized as it has been done for GMAP (see Section 5.2.1).

Robertson 2007). Studying the difficulty of a topic rather than a query makes sense also given the
recent result by Thomas et al. (2017) who find that “task difficulty” would be a more reliable notion
than “query difficulty.” Finally, although, of course, the AAP of a topic will depend on the systems
participating to the evaluation exercise, the measure seems quite stable. For example, there are
50 common topics between R04 and TREC-8; the AAP values computed using the two different
systems populations feature high correlations (Pearson’s ρ correlation is 0.99 and Kendall’s τ is
0.89).

In other terms, what we are proposing is a post-retrieval topic difficulty prediction method
that, at least in principle (i.e., not taking efficiency into account), could be used in practice. Before
turning to the results, let us notice that, given the unsatisfactory results obtained by state of the
art query difficulty predictors (correlations higher than ρ = 0.5 are difficult to obtain), this seems
an interesting and promising approach.

6.2.4 Experimental Results on Predicting Topic Difficulty. At first sight, results seem not exciting.
Figure 6 shows the AAP scatterplots for the five collections and some selected methods (we report
the methods with the highest correlations: usually WUC V4, with the exception of the fifth chart—
on WEB14 SNC is slightly better). Different from the scatterplots presented so far in this article,
here each dot is a topic, not a system, and the axes represent real and predicted AAP, not MAP.
The last (bottom right) chart in figure uses, in place of AAP, a slightly different metric, Geometric
AAP, that can be defined as

GAAP(tj ) =
m

√√
m∏

i=1

AP(si , tj ) = exp �
�

1

m

m∑
i=1

ln(AP(si , tj ))�
�
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Table 11. AAP Correlations; GAAP in the Last Row

SNC WUC V4 SPO S-A%

ρ τ rS RBO∗ τ ∗
AP

ρ τ rS RBO∗ τ ∗
AP

ρ τ rS RBO∗ τ ∗
AP

TREC-8 .26# .24+ .35+ .44 .18 .54 .37 .54 .52 .32 .33+ .30 .42 .46 .25

TB06 .51 .38 .53 .14 .35 .64 .44 .62 .37 .40 .53 .37 .51 .24 .36

TB06M .47 .30 .42 .43 .27 .68 .51 .67 .51 .46 .44 .31 .44 .41 .28

R04 .26 .24 .36 .09 .20 .55 .42 .59 .14 .34 .23 .21 .31 .06 .20

WEB14 .51 .38 .51 .34 .37 .52 .35 .49 .20 .32 .32+ .34 .44 .09 .34

GAAP

TB06M .58 .44 .58 .47 .41 .75 .59 .76 .54 .50 .54 .44 .59 .41 .42

+p < 0.05.
#p > 0.05.

All the other values have p < 0.01.

(GAAP is to AAP as GMAP is to MAP, compare also to formula Equation (3)). GAAP emphasizes
more the difficult/low end of the topic difficulty scale, which seems the interesting one if one wants
to work on difficult topics.9 For the same reasons, in Figure 6 and in the following, we report RBO∗

and τ ∗
AP

, which are the bottom-heavy versions of the top-heavy RBO and τAP , computed simply
by reversing the order of the vectors to give more weight to the difficult topics. Table 11 shows all
the correlation values for the five collections, AAP (GAAP in one case), and the three methods (we
selected the overall most effective method variants; V3 and V4 have similar correlation values).

The best results in topic difficulty prediction are obtained for TB06M with WUC V4 (see the
two right most charts in figure and the values in the table); these values are even higher when
GAAP is used. In these cases the correlation values are comparable to, if not even higher than, the
state-of-the-art, which is around 0.5. However, when comparing the scatterplots and the values
with the previous ones, the most visible difference is that correlations are much lower: topic ease
seems less predictable than system effectiveness.

However, this is not the whole story. While it is important to understand which system is the best
(the most effective one, having the higher effectiveness value), for the topics it is rather important
to understand which are the difficult ones (the ones having the lowest effectiveness values), since
on these alternative strategies can be used to improve effectiveness. Some further analysis is shown
in Figure 7 that shows, for each scatterplot of Figure 6, one boxplot chart where the topics are
grouped into quartiles according to their real AAP (GAAP) value. So, the x-axis represents the
quartiles, the y-axis is still the topic ease predicted by the method, the dots are still topics (the small
horizontal variations on the dots is just a random jitter for graphical reasons, to avoid overlapping
dots), and the boxes summarize the distribution of the predicted values for each quartile, with
the horizontal line corresponding to the median. For all six charts, with just one exception, the
median of each quartile is lower than the subsequent ones. This means that if the difficulty of
topics is measured by categorizing them into the four difficulty categories, the three methods
are reasonably good in predicting it (although, of course, the increasing median is not a sufficient
condition to make the four different classes fully separable). Furthermore, we ran an unpaired t-test
using the Bonferroni’s correction (Dunn 1961): whereas for the four charts about TREC-8, TB06M,
and WEB14, the differences between adjacent quartiles are mostly not significant (also because
only 50 topics occur in those charts, and of course even fewer in each quartile), the differences
between the first and the third quartile, for the two charts about TB06 and R04, are significant.

9It is also possible to use logitAP in place of ln(AP), but in our experiments we did not find any significant difference.
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Fig. 7. AAP boxplots for the scatterplots of Figure 6 divided into quartiles according to AAP (or GAAP);

statistical significance computed considering Bonferroni’s correction.

Figure 8 presents yet another analysis. The six charts are again those corresponding to the
charts in Figures 6 and 7 but, in this figure, the topics are grouped into quartiles accordingly to
the difficulty predicted by the SNC/WUC/SPO method, rather than their real difficulty. What is
interesting here is that for each method the topics that are in the first quartile turn out to be indeed
difficult ones also accordingly to their exact AAP value, with very few exceptions. Although this
is also true for some topics in the second, third, and fourth quartiles (especially for R04 and TB06,
but note that the number of topics is much higher for those collections), this last result can have
immediate practical applications. We could build an IR system that adopts some countermeasures
(e.g., perform an automatic query reformulation, ask further information to the user, and so on)
for the difficult topics. And we can reliably predict which topics are difficult by selecting those in
the first quartile according to each of the three methods. If the countermeasures are effective, this
would lead to a more effective IR system.

In other terms, for topic difficulty prediction, precision seems more important than recall: if a
topic prediction system fails to recognize that a topic is difficult, no harm is done; conversely, if an
IR system adopts some countermeasure on a topic that is easy but is wrongly predicted as false,
this would likely decrease retrieval effectiveness. The three methods are indeed precision-oriented
ones. To state it in yet another way, going back to Figure 6, what is important is that no topics, or
at least very few of them, are in the bottom-right part of the charts, which is indeed the case: the
vast majority of dots are in the top left triangular part.

7 CONCLUSIONS AND FUTURE WORK

In this article, we set to reproduce the most important work on automatic evaluation of IR ef-
fectiveness, i.e., evaluation without human relevance judgments. Instead of only reproducing the
work, we provide a fourfold contribution:
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Fig. 8. AAP boxplots for the scatterplots of Figure 6 divided into quartiles according to SNC/SPO/WUC score.

Statistical significance computed considering Bonferroni’s correction.

(i) we succeeded in reproducing the main results of three previous similar studies, with only
some minor caveats, which we discussed in the respective sections; we released all the
code used to carry out the experiments; different from the original works, we focused
on future reproducibility, and we detailed all the parameters required to implement each
method;

(ii) we presented the results in a uniform way;
(iii) we generalized those results to other test collections, evaluation metrics, and a shallow

pool; and
(iv) we expanded those results, obtaining two practical strategies that seem effective to, re-

spectively, decrease the costs involved in test-collection-based evaluation, and improve
retrieval effectiveness on difficult topics.

A general lesson learned of methodological nature is that we believe that this is the right attitude in
a reproducibility setting: not only simply reproducing, but also providing a uniform representation;
in our case this lead naturally to generalization, and was also inspiring to obtain the apparently
very interesting results (iv).

This article also suggests some future work, some of which has already been mentioned above
and is not repeated here. The results (iv) will need further verifications on other datasets, fine
tuning of the methods, and further experiments on other similar methods. We have not tried to
combine the three methods, which is surely a natural attempt. Injecting strategies to improve AAP
estimation, instead of MAP, are less straightforward but can be devised, perhaps at the individual
AP level. Combinations of injecting and shallow pool-based (i.e., approximated metric computa-
tion) methods can also be devised.
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