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a b s t r a c t 

With the spread of wearable devices and head mounted cameras, a wide range of application requiring 

precise user localization is now possible. In this paper we propose to treat the problem of obtaining the 

user position with respect to a known environment as a video registration problem. Video registration, 

i.e. the task of aligning an input video sequence to a pre-built 3D model, relies on a matching process of 

local keypoints extracted on the query sequence to a 3D point cloud. The overall registration performance 

is strictly tied to the actual quality of this 2D -3D matching, and can degrade if environmental conditions 

such as steep changes in lighting like the ones between day and night occur. To effectively register an 

egocentric video sequence under these conditions, we propose to tackle the source of the problem: the 

matching process. To overcome the shortcomings of standard matching techniques, we introduce a novel 

embedding space that allows us to obtain robust matches by jointly taking into account local descriptors, 

their spatial arrangement and their temporal robustness. The proposal is evaluated using unconstrained 

egocentric video sequences both in terms of matching quality and resulting registration performance us- 

ing different 3D models of historical landmarks. The results show that the proposed method can outper- 

form state of the art registration algorithms, in particular when dealing with the challenges of night and 

day sequences. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Egocentric vision, thanks to the widespread of cheap and

powerful wearable cameras and devices, is increasing its spread

among both researchers and consumers. Exploiting the unique

first person perspective, many recent works have dealt with the

study of self-gestures, social relationships or video summarization

( Alletto et al., 2015; Betancourt et al., 2014; Lee and Grauman,

2015 ). While this new and unique perspective provides invalu-

able insights on the viewpoint of the user, challenging situations

such as severe changes in the lighting of the environment or high

motion blur occur and must be dealt with ( Betancourt et al., 2015 ).

A relevant topic that has been recently studied but is yet to be

brought to the egocentric field is video registration. That is, the

task of precisely localizing an input sequence and, in the case of

egocentric videos, the user, with regard to a pre-built 3D model

(for example a building of historical interest). A precise estima-

tion of the camera extrinsic parameters in a given timeframe,

i.e. precise user localization, can be a significant starting point for
∗ Corresponding author. 
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everal egocentric applications such as personalized tours in a city,

ssistive services or interactive environments. 

The registration of images is a topic that has been widely

tudied in the past years ( Li et al., 2012; Sattler et al., 2012;

chindler et al., 2007 ), on the other hand fewer works have dealt

ith the registration of video sequences and to the best of our

nowledge the employment of egocentric videos has no precedent

n literature. In fact, the unique perspective of first person camera

iews greatly differs from the ones employed in past works under

everal aspects. For example, fixed camera settings featuring

ameras mounted on a van have been exploited, resulting in

he acquisition of videos that display very constrained motion

atterns and where the rigid setup provides accurate ground truth

nformation about the extrinsic of the cameras used in the testing

hase with regard to the ones used to build the Structure from

otion (SfM) model ( Irschara et al., 2009; Kroeger and Van Gool,

014 ). On the contrary, egocentric videos often display fast and

npredictable movements and can be acquired under very differ-

nt conditions from the images or videos used to build the 3D

odel used in the registration. 

Recent works ( Sattler et al., 2012; Schindler et al., 2007 ) have

stablished a standard pipeline for aligning images or video

rames to a pre-build 3D model, which is based on two major

teps: feature matching and camera localization. To address the

http://dx.doi.org/10.1016/j.cviu.2016.09.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.09.010&domain=pdf
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Fig. 1. Samples of the matching results. a video frame acquired in a night sequence (left) compared to a model image (right). Top: SIFT standard matching technique; 

bottom: the proposed approach. 
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rst stage of the pipeline, a widely adopted approach is to extract

IFT feature keypoints and descriptors from a query image and

hen robustly match them against the descriptors composing

he 3D model ( Sattler et al., 2012 ). These correspondences form

he 2D -3D matches that will be used to estimate the camera

ocation in terms of rotation and translation matrices, using a

erspective-n-Point (PnP) algorithm often enclosed in a RANSAC

oop ( Schindler et al., 2007 ). The extrinsic parameters estimation,

hile using algorithms such as RANSAC in order to gain robust-

ess against outliers, strongly depends on the quality of the initial

eature matching between the query and the model. In fact, the

esulting registration performance decreases if the number and

uality of the correspondences found is not sufficient. A major

hallenge in the video registration from an egocentric perspective

erives from the fact that first person videos can span multiples

ime of the day, and can result in being acquired during the night.

ubstantial experiments show how matching images acquired dur-

ng the night against a 3D model built from a collection of images

ollected in normal, daytime lighting conditions, results in very

oor matches, both in terms of quality and number of outliers. 

To address the issues deriving from a poor match between

uery and reference images, recent methods focus on the improve-

ent of the registration results using synthetic views or complex

-posteriori optimizations techniques ( Irschara et al., 2009;

roeger and Van Gool, 2014 ). Here, on the contrary, we propose to

ddress the problem at its source and intervene on the matching

rocedure itself. In particular, we design a novel matching tech-

ique that aims at improving the number of scored matches while

ointly decreasing the number of outlier. To do so, we propose

 novel embedding space that maps local descriptors, its spatial

rrangement and temporal robustness of employed keypoints in

rder to produce a descriptor robust to steep changes in lighting

onditions. Our experiments show that this matching technique

esults in an increase in scored matches in both night and day

equences and in a subsequent improve in registration, without

he need of a-posteriori optimization. Fig. 1 displays an example

f the results obtained by standard SIFT matching on a night-day

atching, and compares it with results achieved from our method.

The main contributions of this paper are the proposition of a

ovel embedding space that takes into account in its design the

hallenges posed by steep changes in illumination. This embedding

pace combines local feature descriptors with a representation of

heir surroundings based on the covariance of densely sampled

eatures. This formulation is further extended to include temporal
oherence by tracking local keypoints over a short time to assess

heir robustness and over-time stability. Finally, we experimentally

how that our video registration proposal can cope with the chal-

enges of night sequences with only a small loss in performance

nd display improved results when compared to current video

egistration state of the art methods. 

. Related work 

Several approaches deal with the task of image registration

reating it as an image retrieval problem, matching the query

mage against a database of images with annotated localization,

.e. their rotation and translation matrices aligning them to the

esired 3D model ( Bourmaud and Giremus, 2015; Li et al., 2012;

attler et al., 2012; Schindler et al., 2007; Torii et al., 2015b; Zamir

nd Shah, 2014 ). These approaches tend to be slower due to the

igh number of comparisons required and can produce a localiza-

ion that is only accurate at the scale of the single images in the

atabase, but can benefit from established image retrieval meth-

ds. Schindler et al. (2007) deal with the task of city scale image

ocalization using a bag-of-words representation of street view im-

ges. Similarly, Hays and Efros (2008) compute coarse geo-location

nformation of a query image by matching it to a set of Flickr

eo-tagged images. While these approaches can achieve significant

erformance in scenarios of large-scale localization such as city-

cale, their localization is precise at most as the geo-location of the

sed images and GPS position is often not accurate enough when

ocalizing a camera with regard to a model of a single building. 

Aiming at the improvement of localization performance, the

se of the 3D structure of the surrounding environment has been

ecently employed ( Sattler et al., 2011 ). In fact, thanks to the

ecent advancements in Structure from Motion techniques, 3D

odels can be obtained by a small set of images and can be build

n a city-scale with even with consumer computers ( Wu, 2011 ).

his results in a shift in paradigm where the descriptors computed

n the query image are matched directly to the descriptors of

he 3D point-cloud instead of having the intermediate step of

atching with the images used to build said point-cloud. To most

idely employed descriptors used are the local-invariant SIFT

escriptors ( Lowe, 2004 ), which are robust to scale variations and

o moderate changes in viewpoint. Despite this progresses, the ap-

roaches that rely on the matching of interest points succeed only

nder moderate changes in visual appearance. Image registration

n sequences where severe changes in lighting occur due to the
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Fig. 2. Schematization of the proposed video frame registration approach. 
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acquisition happening during the night still pose a challenge for

automated algorithms and especially for their matching phase. 

Few approaches have addressed the issues caused

by these changes in lighting conditions. Among them,

Hauagge et al. (2014) design a method based on multiple il-

lumination models, capturing the lighting variations of outdoor

environments at different timestamps employing large collections

of images of the same outdoor location. On a different note, the

work by Torii et al. (2015a ) proposes a method that deals with the

place recognition task using a combination of synthesized virtual

views modeling buildings under different lighting conditions and

viewpoints and performing dense keypoint matching from the

query to the most similar (in terms of viewpoint and lighting)

synthetic view available. In contrast to these approaches, we pro-

pose a method capable of finding 2D -3D correspondences thanks

to a more robust matching phase, that results in a more accurate

localization when compared to the use of synthetic models. 

The task of registering a video sequence to a 3D model can be

performed in two fundamentally different ways. The first, while

not being a proper registration technique in the sense that the

3D model is not pre-built but learned online, is Simultaneous

Localization and Mapping (SLAM) ( Concha and Civera, 2015; Engel

et al., 2014; Forster et al., 2014 ). SLAM jointly builds the 3D model

of the scene and locates the camera in the environment using the

3D model as reference. Similarly to video registration, this process

is often performed through robust keypoint matching; on the

other hand a major difference is due to the fact that the camera

employed in building the model and in acquiring the query frames

is the same, so the internal camera parameters remain constant

throughout the problem and both the model and query sequence

share the same lighting and environmental conditions. Widely

popular in the field of robotics, few SLAM approaches have been

extended to the task of video registration. 

The problem commonly referred to as video registration em-

ployes a pre-build 3D model that can be the result of a collection

of heterogeneous images and videos. To effectively register an

input video sequence to a model, Zhao et al. (2004) propose

to build a SfM model from the input query and then rigidly

aligning this model to the reference 3D point cloud. On the other

hand, Lim et al. (2012) develop a real-time registration technique

that uses direct 2D -3D feature matching interleaved with 2D

keypoint tracking to increase the robustness of the matching.

Irschara et al. (2009) deal with the problem of registering a video

sequence by increasing the number of views and thus of potential

keypoint matches by augmenting the model with synthetic views.

Recently, the paper by Kroeger and Van Gool (2014) demonstrates
 a
ow direct application of classical registration techniques to the

ask of registering a video sequences, namely image registration

pplied to the single frames, results in a noisy localization due to

he fact that individual errors can overcome the actual changes in

amera location. The authors propose to employ a standard image

egistration approach on the single frames and then refine it by

 global a-posteriori optimization that relies on techniques such

s spline smoothing, kernel regression or least squares minimiza-

ion. The temporal smoothness inherent to the video sequence

s exploited thanks to the a-posteriori optimization, allowing the

uthors to achieve state of the art results. 

While current state of the art approaches rely on different

inds of synthesis or a-posteriori refinement in order to improve

he registration performance, in this paper we propose to inter-

ene on the feature matching process in order to produce reliable

D -3D correspondences that can be exploited by PnP algorithms to

roduce better extrinsic matrices. This is in contrast to obtaining

oisy rotation and translation matrices and then optimizing their

ocations using empirical constraints. In our method the spatio-

emporal consistency that is part of a video sequence is exploited

y embedding points into a space that produces a representation

obust to severe changes in lighting conditions. 

. The proposed approach 

Given an egocentric video sequence, the proposed solution

ligns it to a pre-built 3D model generated by performing a SfM

ethod on a set of images. The SfM pipeline ( Wu, 2011 ) first

erforms image matching to estimate information about the scene

tructure. In this first step local SIFT features are used, because

hey have been proved to be able to identify discriminative lo-

al elements with good invariant properties to photometric and

eometric transformations. After finding a set of geometrically

onsistent matches between each image pair, the set of cam-

ra parameters (position, orientation and focal length) and 3D

ocation for each match is computed by solving a non linear

ptimization problem that minimizes the reprojection error (the

um of distances between the projections of the 3D Point and

ts corresponding keypoints). To build 3D models state of the

rt techniques exploit a large set of images captured during day

ime, in which the keypoint extraction and matching process

an achieve its best results ( Kroeger and Van Gool, 2014; Sattler

t al., 2011 ). Therefore, to build a stable 3D model, we collect

mages presenting the same characteristics of the ones used in the

forementioned works, that is good lighting conditions. 
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SIFT Keypoints

Extraction

Dense Square

Patches Extraction

SIFT Descriptor
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Context Descriptor
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Fig. 3. Schematization of the extraction of our descriptors based on SIFT and covariance descriptors. 
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In egocentric scenarios the first step is to prune the sequence

emoving unstable frames (fast head movements and physically

raveling form a point to another). To predict these events we

xtract for each frame a visual descriptor based on apparent

otion and blurriness. Specifically, the visual motion feature is

ased on optical flow estimated using the Farneback algorithm

n a 3 × 3 grid. Considering the optical flow V x , V y (gradients

omputed for horizontal and vertical components), we compute

he motion histogram by concatenating the apparent motion mag-

itudes M = 

√ 

V 2 x + V 2 y , with the orientations θ = arctan (V y /V x ) ,

oth quantized in eight bins for each frame section, weighting

hem by their respective magnitude. To assess the frame quality,

e compute a blur feature using the method presented in Crété-

offet et al. (2007) . Based on these features we train a one-vs-all

inear classifier allowing to efficiently remove frames where the

resence of motion and blur would otherwise prevent the use of

ocal keypoint descriptors. 

Once that a subset of a video is selected, we retrieve 2D -3D

orrespondences by matching its frames to the images employed

n the model construction and retrieve their correspondences on

he 3D point cloud. To efficiently retrieve these correspondences

e adopt the approach presented in Philbin et al. (2007) to build a

anked list of similar images comparing the image representation

f the input query and of the images used in the 3D model

uilding. After this initial retrieval phase, we propose to refine

ts results by introducing our matching strategy that involves the

rst K top ranked images (we experimentally fix K = 25). Once

D -3D correspondences are obtained, the absolute camera pose

f each frame is determine by solving the perspectiven-point

PnP) problem ( Hartley and Zisserman, 2004; Irschara et al., 2009;

ukelova et al., 2013; Zheng et al., 2013 ). In our approach we use

he ASPnP n-point-pose algorithm ( Zheng et al., 2013 ) enclosed in

 RANSAC loop to obtain robust and accurate frame registration,

.e. the rotation and translation matrices. Fig. 2 summarizes the

verall pipeline of the proposed method. 

Egocentric videos, by their very nature, are recorded in uncon-

trained scenarios with extreme lighting variations, for example

ideos can be acquired during day or night time. In this context,

tandard video frame registration techniques archive poor perfor-

ance. This is mainly due to the fact that the matching step is

ot able to select robust features; we hence propose an approach

hat can identify robust matches even if there are severe changes

n illumination conditions between the query sequence and the

D model. Fig. 3 shows a schematization of the feature extraction. 

Based on experimental results, we observed that the use

f local feature descriptors only (e.g. SIFT) is not sufficient to

btain accurate matches across large changes in scene appear-

nce due to day/night illumination. In fact, the quality and the

umber of SIFT matches with significantly different lighting con-

u  
itions is not enough for effective video registration applications.

herefore, we propose to represent each keypoint by its local

escriptor and its context. Formally, an interest point x i is defined

s x i = (ψ g (x i ) , ψ o (x i ) , ψ s (x i ) , ψ f (x i ) , ψ c (x i )) where the symbol

 g (x i ) ∈ R 

2 stands for the 2 D coordinates of x i , ψ o ( x i ) denotes

he orientation information, ψ s ( x i ) is the scale factor, ψ f (x i ) ∈ R 

D 

orresponds to the local descriptor ( D equal to 128, i.e. the co-

fficients of the SIFT descriptor), while ψ c ( x i ) is a representation

ased on descriptors densely sampled around of x i . 

To obtain ψ c ( x i ), we first consider a square region of interest

RoI) surrounding x i obtained by multiplying a constant value

to the scale ψ s ( x i ) (we empirically fix ε = 6 based on pre-

iminary experiments). Let R = { r 1 . . . r N } be a set of local SIFT

eatures densely extracted on this region, we summarize them by

omputing their covariance matrix descriptor C : 

 = 

1 

N − 1 

N ∑ 

i =1 

( r i − m )( r i − m ) T , (1)

here m is the mean vector of the set R . This covariance

epresentation, that encodes information about the vari-

nce of the features and their correlations, does not need a

isual codebook (required for several image descriptors such

s Fisher Vector ( Perronnin et al., 2010 ), VLAD ( Jegou et al.,

010 ), LLC ( Wang et al., 2010 ) and more), thus removing the

ependence from the specific dataset ( Serra et al., 2015 ). It has

een shown in Philbin et al. (2008) that the accuracy of im-

ge retrieval systems based on a visual vocabulary drastically

rops if the visual words are extracted using a dataset (Ox-

ord dataset ( http://www.robots.ox.ac.uk/ ∼vgg/data/oxbuildings/ ))

nd the test is performed on another similar dataset (Paris

 http://www.robots.ox.ac.uk/ ∼vgg/data/parisbuildings/ )). In fact, 

ethods based on the generation of a codebook split dense

egions of the descriptor space arbitrarily according to the SIFT

istribution on the dataset. Therefore the bins do not equally split

he unit hypersphere which SIFT covers, resulting in an uneven

istribution of points that could not be the right representation

or a different scenario. Since our method is designed to cope with

gocentric videos which are inherently unconstrained, not being

ied to a training dataset is a necessary working condition. Further-

ore, covariance descriptors are reported being more robust than

irectly exploiting features based on gradients because, under illu-

ination variations, variations of gradients inside a region change

ess than the gradient intensities themselves ( Bak et al., 2012 ). 

Although the covariance representation is independent of a

pecific dataset, the distance between two descriptors can not be

omputed as a Euclidean distance. In fact, these matrices lie in

 Riemannian manifold which is not a vector space. Therefore, a

apping function to a Euclidean space is required. We propose to

se the projection transformation from the Riemannian manifold

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
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to a Euclidean tangent space, called Log-Euclidean metric. In fact,

this manifold is a topological space that is locally similar to a

Euclidean space, in which each tangent space has an inner product

( Tuzel et al., 2008 ). 

First the covariance matrix is projected from the Riemannian

manifold on a Euclidean space tangent through a tangency matrix

H . Then, the projected vector is transformed in orthonormal

coordinates. More formally the projection of C on the hyperplane

tangent to H is defined as: 

ˆ C = vec I 

(
log 

(
H 

− 1 
2 C H 

− 1 
2 

))
, (2)

where log is the matrix logarithm operator, while the vector

operator vec I of a symmetric matrix W on the tangent space at

identity I is represented as: 

vec I ( W ) = 

[
w 1 , 1 

√ 

2 w 1 , 2 

√ 

2 w 1 , 3 . . . w 2 , 2 

√ 

2 w 2 , 3 . . . w d,d 

]
. (3)

By computing the sectional curvature of the Riemmanian man-

ifold it is possible to show that this space is almost flat ( Tosato

et al., 2013 ). This characteristic of the feature space is particularly

suitable when dealing with a local embedding function such as

the one that we propose use in order to find matches. In addition,

it also allows us to choose H equal to the identity matrix, thus

avoiding the parameter optimization for a specific scenario. As the

projected covariance to Euclidean space is a symmetric matrix of

D × D values (e.g. D = 128 , the SIFT dimensionality), the context

descriptor ψ c ( x i ) is a (d 2 + d) / 2 -dimensional feature vector. 

Based on these features we present a new robust feature

matching technique that maps both local and context descrip-

tors in a common embedding space. Let F = { (ψ f (x i ) , ψ c (x i ) } p i =1 
,

M = { (ψ f (y i ) , ψ c (y i ) } q i =1 
be respectively the list of interest points

features (local and context descriptors) taken from a query video

frame and an image registered to pre-built 3D model. To project

the feature points ( F and M ) to the common embedded points Z ,

we propose to minimize the following objective function: 

Z = arg min Z 

∑ 

i, j 

∥∥z i − z j 
∥∥2 

P F M 

i j R 

F M 

i j (4)

where i = 1 , . . . , p, j = 1 , . . . , q, the weight matrix P FM (where

P F M 

i, j 
= K((ψ f (x i ) , (ψ f (y j )) ) encodes the similarity between local

descriptors, while R FM (where R F M 

i, j 
= K((ψ c (x i ) , (ψ c (y j )) ) repre-

sent the similarity between context descriptors. In both cases

Gaussian kernel K is adopt, for example 

K(ψ f (x i ) , (ψ f (y j )) = e −‖ 

ψ f (x i ) −ψ f (y j ) ‖ 

2 
/ σ 2 

(5)

where σ is empirically fixed. A unit L2-norm constraint on Z is

applied to avoid trivial solutions. 

The minimization of this embedding function maps the points

z i and z j close in the embedding space if their feature similarity

kernels P F M 

i, j 
and R F M 

i, j 
both present high values. Notice that a

weighted Kronecker product between these two matrices could

also be adopted to equalize their similarities. However, the ac-

curacy of the matches with learnt weights tends to be similar to

the one obtained using uniform weights chosen through cross-

validation ( Varma and Babu, 2009 ). In addition, it would lead to

a dataset-dependent tuning, again in contrast with our purposes;

therefore we use uniform weights. The resulting embedding func-

tion is very suitable, because it can be efficiently solved as an

Eigen-value problem and can be easily extended including spatial

and temporal constrains (see next Section). 

The Eq. (4) , following the approach proposed in Belkin and

Niyogi (2003) , can be reduced to: 

ˆ Z = arg min Z T LZ 

subject to Z T DZ = I and Z T D 1 = I (6)
here L is the Laplacian of the matrix P R F M = P F M 

� R F M ;

 = D − P R F M , where D is the diagonal matrix defined as

 ii = 

∑ 

j P R 
F M 

i j 
. The constraint Z T DZ = I has been introduced

o remove the arbitrary scaling. Minimizing this function can be

one as an eigenvector problem: L z = λDz, in which the optimal

olution can be obtained by the bottom d nonzero eigenvectors. 

. Spatial and temporal constraints 

The aforementioned embedding function ( Eq. (4 )) can be ex-

ended to include time consistency by tracking local keypoints

nd add spatial constraints by considering their spatio-temporal

rrangement. 

Let F T −k = { (ψ 

T −k 
g (x i ) , ψ 

T −k 
f 

(x i ) , ψ 

T −k 
c (x i ) } i , k = 0 . . . K, and

 = { (ψ f (y i ) , ψ c (y i ) } i be the list of the point descriptors of a

hort-time sequence of K + 1 frames and M is an image linked

o the 3D model as previously described. To include temporal

onsistency, interest points are tracked through the sequence. Due

o the simple nature of short term keypoint tracking, we use the

LT approach ( Tomasi and Kanade, 1991 ) which is fast and robust.

nterest points that cannot be effectively tracked across the entire

equence are discarded. 

The objective function that we propose to minimize to build

he embedding space including the aforementioned constrains is

he following: 

 = arg min Z 

∑ 

i, j 

∥∥z T i − z M 

j 

∥∥2 
P F 

T M 

i j R 

F T M 

i j 

+ 

∑ 

i, j 

∥∥z T i − z T j 

∥∥2 
S T i, j G 

T 
i, j (7)

here the matrix S T and G 

T encodes the spatial and temporal

imilarity respectively: 

 

T 
i, j = e −‖ 

ψ 

T 
g (x i ) −ψ 

T 
g (x j ) ‖ 

2 
/ σ 2 

(8)

 

T 
i, j = e −

∑ K 
p=1 ( ‖ 

ψ 
T−p 
g (x i ) −ψ 

T−p 
g (x j ) ‖ 

−‖ 

ψ T g (x i ) −ψ T g (x j ) ‖ ) 
2 

σ2 (9)

here ψ g ( x i ) represents for the 2 D coordinates of x i . In other

ords, S T constrains the embedding space to take into account the

patial arrangement of the interest points of the frame T, while

 

T encodes how the spatial arrangement remained constant in the

equence. The objective function in Eq. (7) can be formulated, fol-

owing the solution presented in Torki and Elgammal (2010) , as: 

 = arg min Z 

∑ 

O = { T,M} 

∑ 

i, j 

∥∥z T i − z O j 

∥∥2 
U 

F M 

i, j (10)

here U 

FM is defined as: 

 

F M = 

{
P F 

T M 

i j 
R 

F T M 

i j 
f or M 

S T 
i, j 

G 

T 
i, j 

f or T 
(11)

Similarly to Eq. (4) this objective function, encoding spatial and

emporal constrains ( Eq. (10) ), can be solved as an Eigen-value

roblem. The resulting embedding space guarantees that the Eu-

lidean distances between the embedded points take into account

oth spatial and temporal constraints. Therefore, to select robust

atches we can treat it as a bipartite graph matching problem.

hat is, when matching two images the two disjoint sets of

eypoints, whose description lies in the embedding space, can be

rranged into two disjoint sets and the matching problem can be

odeled as treating the keypoints as nodes of a bipartite graph. In

articular we exploit the Hungarian Algorithm ( Papadimitriou and

tieglitz, 1982 ) to find a possible correspondence of each interest

oint in the frame T . This allows the method to find an opti-

al solution, avoiding the greedy association problem typical of



S. Alletto et al. / Computer Vision and Image Understanding 157 (2017) 274–283 279 

Table 1 

Average number of inliers and matches per query. 

Method Daytime Nighttime 

# Inliers # Matches Ratio # Inliers # Matches Ratio 

Ours Eq. (4) 175 334 0 .524 20 155 0 .129 

Ours (SP) 152 216 0 .704 32 58 0 .552 

Ours (SP+Temp) 196 262 0 .748 31 50 0 .620 

SIFT Baseline 178 348 0 .511 12 204 0 .059 

Torki and Elgammal (2010) 234 394 0 .594 28 142 0 .197 
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Table 2 

Average number of inliers scored by the variants of our method under 

different embedding dimension. 

Embedding Dimension Ours Eq. (4) Ours (SP) Ours Eq. (7) 

20 126 134 181 

40 164 144 184 

60 175 152 196 

80 168 142 193 

100 177 145 179 
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earest-neighbor matching, which can fail in complex scenarios

uch as the one tackled by our method. Since the Hungarian

lgorithm always produces a match, to reduce outlier matches

e compare the similarity of the candidate match to the one

f the second-closest neighbour. If the closest neighbor is sig-

ificantly closer than the second feature point (following the

mplementation of Lowe (2004) ) the match is considered correct. 

. Experimental results 

In order to experimentally validate the proposed method, we

ecord a set of unconstrained first person videos covering four

ifferent historical buildings in the city of Modena: the Ducal

alace, the Cathedral, the St. George Church and the Synagogue.

urthermore, each scenario is composed of two sequences, one

ecorded during the day and one recorded during the night. To the

est of our knowledge, this is the first collection of unconstrained

gocentric videos of cultural heritage sites featuring both night

nd day sequences. To build the 3D models of the aforementioned

uildings, we collect a set of images gathered from Flickr and

se them in the reconstruction process. Since current methods

mploying 3D models for registration adopt daytime images only

 Irschara et al., 2009; Kroeger and Van Gool, 2014 ), we also restrict

ur search to such images, maintaining the compatibility of our

ethod to other approaches and providing a fair comparison. The

nal dataset is composed by a subset of the videos as queries,

nd a subset of the images used to build the 3D model as the

eferences to match with. It consists of up to 50 query frames per

uilding, obtained by selecting stable sequences using the pruning

tep described in Section 3 ; the 3D models are composed by 1150

mages, 400k 3D points and 2000k descriptors. For each query

rame, the previous T frames are included to be used to enforce

emporal consistency, with T up to 20. Ground truth rotation and

ranslation matrices for the query sequences have been obtained

y manually aligning them to the 3D models, i.e. by manually pro-

iding ground truth matches as input for a SfM tool ( Wu, 2011 ).

o allow further research on the egocentric video registration

opic, we release the dataset featuring both query sequences and

re-built 3D models on the project page 1 . 

.1. Matching evaluation 

Matching images and video sequences acquired during the

ight with reference images featuring daytime lighting conditions

s a challenging task, and we now show an evaluation of the per-

ormance of our method under such circumstances. In the follow-

ng, the query sequences are matched with a subset of the images

sed in the construction of the models and the number of correct

atches is evaluated. This allows us to show the performance

f different methods in terms of scored matches when dealing

ith steep changes in lighting conditions. Table 1 compares a SIFT

atching baseline (obtained using the VLFeat 2 MATLAB libray), a
1 http://imagelab.unimore.it/videoregistration.html 
2 http://www.vlfeat.org/ 

h  

v  

r  

s  
ecent matching method based on laplacian embedding of local

eatures ( Torki and Elgammal, 2010 ) and three variations of our

ethod. Note that in Torki and Elgammal (2010) the authors

o not apply any spatial structure weighting. In particular, we

valuate the proposed approach in different steps of its pipeline in

rder to show the improvement that results from the refinement

f the method as described in Section 3 . The first variation of

ur method evaluated reflects Eq. (4) , where only SIFT and co-

ariance descriptors are embedded into the space used to match

mages. The second and third variants of our method evaluated in

able 1 are, respectively, the based on Eq. (4) with the inclusion in

he embedding space of the spacial similarity ( S T 
i, j 

in Eq. (7 )) and

he full method including the temporal consistency ( Eq. (7 )). In the

able, the three variations of our method are referred to as: Ours

q. 4 , Ours (SP) and Ours Eq. (7 ). These are the number of inlier

atches scored for each query in each scenario (corresponding

o the actual number of 2D-3D correspondences that will be fed

o the PnP algorithm), and as the table shows the usage of our

ethod can improve the baseline results significantly, especially

hen dealing with nighttime images. In particular, when matching

aytime images, all the methods produce inlier ratios above 50%;

n the contrary, when challenged with queries acquired during

he night and matching them with daytime reference images, the

nlier ratios drastically decrease. In particular, while the SIFT base-

ine produces sufficient results during the day, a RANSAC loop on

he matches computed during the night cannot formulate a viable

ransformation hypothesis (6% inlier rate). Similarly, the method by

orki et al. and our initial approach based on Eq. (5) cannot cope

ith the noise in the descriptors that is due to the steep change in

ighting conditions (respectively 20% and 13% inlier rates). On the

ther hand, adopting our robust spatial information and further

xtending it by embedding temporal robustness is shown to pro-

uce a matching where the inlier ratio is sufficiently high (62%). 

A parameter that has been considered during the experiments

s the dimension of the resulting embedding space. Spectral Gap

nalysis has been employed to determine the best embedding

imension for the employed dataset, but in order to evaluate the

enerality of the method we perform experiments evaluating the

umber of scored matches under varying embedding dimension.

able 2 displays the result of this evaluation: it can be noticed

ow, while the value 60 selected via spectral gap analysis pro-

ides the best performance, the variance is not significant. This

esult shows that the embedding dimension does not have a

trong influence on the descriptor matching phase, hence the

http://imagelab.unimore.it/videoregistration.html
http://www.vlfeat.org/
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Fig. 4. Samples of the matching results in scenarios where strong differences between query frame and reference image are present. Each cell of the image contains the 

results of the following methods, from up to botton: SIFT baseline, ( Torki and Elgammal, 2010 ), Ours (SP), Ours Eq. (7) . 

Table 3 

Average number of inlier matches under different scales of the covariance RoI. 

Scale factor 0 .7 0 .8 0 .9 1 1 .1 1 .5 2 .5 5 .5 10 

# Inliers 4 49 195 196 196 180 175 157 118 
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proposed method does not suffer from the presence of a strictly

data-dependent parameter. 

Another significant factor that impacts on the performance

of the proposed approach is the size of the RoI from where to

extract the covariance descriptor. In fact, sampling data from both

an excessively small or broad region would result in a descrip-

tor which is, respectively, discriminative but less robust or less

discriminative but more robust. Table 3 reports the results of

our method ( Eq. (7) ) under different patch sizes, where the base

size (scale factor 1) of the patch is [24, 24] × ψ s ( x i ) (scale of

the corresponding SIFT keypoint). It can be noticed how lower

values quickly degrade the number of inliers due to the loss in

discriminative power of the covariance descriptor. Similarly, if the

RoI is excessively broad (scale factors > 2.5) results in reduced

due to significant overlap between the regions and a further loss

in discriminative capabilities. In the following experiments, the

size corresponding to a scale factor of 1 is adopted. Figures 4 and

5 report some examples of the matching results. 

5.2. Video registration analysis 

In the following experiments, we focus on the employment of

our matching algorithm in the task of video registration, i.e. the

precise localization of the input egocentric video sequence on a
D model. Given the wide range of possibilities implied by the

doption of the egocentric setting, videos acquired during both

ight and day are considered in the experiment. The goal is to

btain the extrinsic parameters of the camera acquiring the video

t a frame level: similarly to Kroeger and Van Gool (2014) , the

uality of the performed registration is hence measured in terms

f position RMS error (expressed in meters) and orientation RMS

rror (degrees). These two metrics express the quality of the

egistration, separately analyzing its two components, namely the

btained transition and rotation matrices. 

While a broader variety of methods have dealt with the task

f registering single images, very few works consider the usage of

ideo. Among them, the work by Kroeger and Van Gool (2014) rep-

esents the current state of the art in the task of registering videos

o a 3D point cloud obtained via SfM. This method presents two

ignificant differences respect to our setting: the cameras are

xed on a van instead of being head mounted, and it does not

eal with the possibility of steep lighting changes. Despite this,

 comparison against the work by Kroeger et al. is key in order

o validate the performance of our method compared to what the

urrent state of the art is. As a result, we perform an evaluation

f the registration performance of both methods employing the

ame 3D models which only feature images acquired during the

ay, putting ( Kroeger and Van Gool, 2014 ) in its ideal working

onditions. Since both approaches evaluate their results in terms

f rotation and translation errors, the ground truth information of

hese matrices is also shared during the evaluation. 

Table 4 shows the results of this evaluation. In order to better

tudy the correlation between improved matching and increased

egistration performance, in this experiment we also evaluate

he variants of our method considered in Table 1 , as long as the
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Fig. 5. Samples of the matching results. From left to right: two matching frames extracted from night sequences compared to the model images and two matching frames 

extracted from day sequences. From up to bottom: SIFT Baseline, ( Torki and Elgammal, 2010 ), Ours (SP), Ours Eq. (7) . 

Table 4 

Comparison of the video frame registration performance in different scenarios and lighting conditions. The position error is reported in 

meters, while the orientation error is reported in degrees. 

Ours Eq. (4) Ours (SP) Ours Eq. (7) SIFT baseline 

Kroeger and 

Van Gool (2014) 

Scenario Pos. Orient. Pos. Orient. Pos. Orient. Pos. Orient. Pos. Orient. 

Ducal palace Day 1 .758 5 .327 0 .809 2 .572 0 .648 2 .518 0 .662 2 .508 0 .596 1 .998 

# Reg. 19 / 20 19.2 / 20 19.5 / 20 19.8 / 20 20 / 20 

Night 19 .588 94 .047 2 .298 5 .785 1 .616 2 .417 17 .350 59 .600 3 .912 4 .593 

# Reg. 20 / 25 23 / 25 24.8 / 25 11 / 25 25 / 25 

Cathedral Day 1 .535 6 .767 0 .7926 1 .479 0 .697 1 .422 0 .761 1 .600 0 .774 6 .6358 

# Reg. 24 / 25 24.8 / 25 24.8 / 25 25 / 25 25 / 25 

Night 29 .135 85 .033 2 .944 6 .255 2 .430 6 .054 22 .407 64 .042 4 .850 2 .253 

# Reg. 21.6 / 25 23 / 25 24.6 / 25 24 / 25 25 / 25 

St. George Day 1 .054 21 .343 0 .854 21 .364 0 .885 20 .526 0 .668 20 .607 0 .776 16 .686 

# Reg. 19.2 / 25 22.4 / 25 21 / 25 23 / 25 25 / 25 

Night 20 .366 129 .385 5 .463 53 .943 9 .497 41 .294 13 .119 144 .534 11 .408 86 .663 

# Reg. 15.6 / 25 19 / 25 20.6 / 25 14.6 / 25 25 / 25 

Synagogue Day 9 .621 68 .855 5 .860 41 .723 0 .976 24 .626 2 .432 32 .467 0 .841 23 .844 

# Reg. 19 / 25 14.4 / 25 15.7 / 25 24 / 25 25 / 25 

Night 9 .944 100 .852 8 .577 88 .315 2 .138 24 .282 4 .560 69 .329 3 .672 30 .717 

# Reg. 6 / 14 7.2 / 14 12.6 / 14 9.8 / 14 14 / 14 
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o  
atching strategy proposed by Torki and Elgammal (2010) . Except

or Kroeger and Van Gool (2014) , all the matching approaches

valuated are followed by the same ASPnP procedure, ensuring

hat changes in registration performance are due to the different

nputs the algorithm receives, i.e. matches of different quality. In

rder to provide comparable results with the method by Kroeger

t al., results are expressed in terms of median error over 10

ross-validation iterations. In fact, since the smoothing component

f Kroeger and Van Gool (2014) always refines the initial PnP

ose, it results in a root mean-squared (RMS) error one order

f magnitude greater that the other methods in the presence of

utlier poses (which tends to happen with nighttime sequences). 

It can be noticed how, in general, the SIFT baseline cannot

roduce good registration results having a position error that is

sually double or more the error of the other approaches and an

rientation error that in average is around 90. This is due to the

uclidean distance of SIFT descriptors not being able to produce

ufficiently accurate matching results, preventing the RANSAC

lgorithm to correctly discriminate inliers and outliers, resulting in

he failure of the ASPnP extrinsic parameters estimation. Analyzing

he three variants of our method, it can be seen how employing

oth spatial and temporal consistency (Ours Eq. (7) ) generally

rovides the best registration results despite having a slightly

ower amount of matches. This confirms the fact that the temporal
obustness of keypoints can remove actual outliers from the PnP

rocedure. As expected, the method by Kroeger et al. produces

ery good registration performance when dealing with video

equences acquired during the day but is less robust when fac-

ng significant differences in lighting conditions between input

ideos and 3D model. In particular, it suffers the most in terms

f orientation error, with performance that can degrade from

6.686 during the day to 86.663 during the night in the scenario

f the St. George. Finally, the matching strategy proposed by Torki

t al. presents similar results, showing an increase in position and

rientation errors between day and night that is due to the lower

uality of matches produces. To better convey the results of the

ifferent methods on the individual sequences, Fig. 6 reports the

esults of the registration phase in terms of number of registered

mages under different rejection thresholds. That is, the number

f registered images obtained by rejecting all those registered

ith an error above a certain threshold. It can be noticed how,

hile in the left plot most of the methods quickly converge to the

ame registration performance, registering nighttime images (right

lot) is significantly more difficult and the improvement achieved

y our solution using both spatial and temporal information is

ignificant. 

As matching has become a crucial and time consuming part

f 3D reconstruction, it is useful to analyze the different run-
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(b)
Fig. 6. Plots reporting the amount of registered query images under different rejection thresholds. On the left: daytime sequences. On the right: nighttime sequences. First 

row: position threshold (meters), second row: orientation threshold (degrees). 

Table 5 

Execution times (s) for registering a query sequence. 

Method SIFT baseline Ours Eq. (4) Ours (SP) Ours Eq. (7) Kroeger and Van Gool (2014) Torki and Elgammal (2010) 

Time (s) 78 .42 98 .28 102 .27 105 .48 288 .11 ∗ 100 .16 
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ning times of the various methods adopted in the comparison.

Table 5 reports the results of this comparison, performed with

un-optimized and un-parallelized MATLAB code on a i7-4790

CPU. It can be noticed how the SIFT baseline results in being

the fastest method, albeit the least accurate one. On the other

hand, more complex methods result in increased running times

but better performance. Please notice that the method by Kroeger

et al. performs a global optimization using all the queries at once,

hence the increase in reported time. 

Considering the scalability of the proposed method, in order to

register a query sequence to its 3D model the number of required

2D -3D correspondences is limited. This means that, provided a

technique able to select a subset of the overall database of images,

the execution time of the matching phase could remain constant

despite the increase in scale of the 3D model, up to including

thousands of images in the 3D reconstruction. In particular, we use

the image retrieval approach presented in Philbin et al. (2007) to

select the K images closer to the query (see Section 3 ) and

perform the matching only using them. Performing the image

retrieval preprocessing, i.e. codebook construction, description

of the database images using the codebook and their ranking

according to the similarity with the query requires the following

time: 14.48 s for a database of 200 images, 23.54 s for 400 images,

56.14 s for 80 0, 166.0 0 s for 1600 and 398.11 s for 3200. Note

that the reported times have been obtained using optimized C++

code (via the OpenCV library) and do not include feature (SIFT)

extraction since it is a step that must be done when performing

the 3D reconstruction regardless of the usage of a BoW technique.

These results show that increasing the number of images in the
atabase up to the thousands only has a small impact on the

verall time requirements. 

. Conclusions 

In this paper we proposed a video frame registration approach

hat copes with the challenges of severe illumination changes that

ften occur in egocentric video sequences. The presented embed-

ing function, that defines a feature space which encodes visual

imilarity, spatial arrangement of features and their stability over

ime, allows us to use standard techniques like bipartite graphs to

obustly compute 2D-3D correspondence between the candidate

rame and the pre-built 3D model. Experimental results demon-

trate that the proposed approach obtains better performances

ith respect to the current state of the art in terms of video

egistration accuracy and show its robustness in unconstrained

ay/night video sequences. 
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