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Abstract. With the increasing popularity of wearable cameras, such
as GoPro or Narrative Clip, research on continuous activity monitor-
ing from egocentric cameras has received a lot of attention. Research in
hardware and software is devoted to find new efficient, stable and long-
time running solutions; however, devices are too power-hungry for truly
always-on operation, and are aggressively duty-cycled to achieve accept-
able lifetimes. In this paper we present a wearable system for context
change detection based on an egocentric camera with ultra-low power
consumption that can collect data 24/7. Although the resolution of the
captured images is low, experimental results in real scenarios demon-
strate how our approach, based on Siamese Neural Networks, can achieve
visual context awareness with an accuracy of 0.58. In particular, we com-
pare our solution with hand-crafted features and with state of art tech-
nique and propose a novel and challenging dataset composed of roughly
30000 low-resolution images.

Keywords: Egocentric vision, low-power camera, low-resolution, neural
network

1 Introduction and Related Works

Understanding everyday life activities is gaining more and more attention in the
research community. This has triggered a number of interesting applications,
ranging from health monitoring, memory rehabilitation, lifestyle analysis to se-
curity and entertainment [31, 14, 32, 13]. These are mainly based on two sources
of data: sensor and visual data. Sensor data, such as GPS, light, temperature
and acceleration have been extensively used for activity monitoring [15, 25, 22]:
among others, Kwapisz et al. [17] describe how a smartphone can be used to
perform activity recognition simply by keeping it in the pocket. Guan et al. [11]
present a semi-supervised learning algorithm for action understanding based on
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Fig. 1. We address the problem of recognizing context changes from low-Resolution
images. Figure shows some images taken from the Stonyman Dataset.

40 accelerometers strapped loosely to common trousers. Although sensor data
can be easily collected for days, thanks to low energy consumption, its ability to
recognize complex activities and the context around the user is low.

On the other hand, computer vision can indeed capture much richer contex-
tual information which has been successfully used to recognize more complex
activities [29, 1, 18]. Recently, several works that consider vision tasks from the
egocentric perspective have been presented. Poleg et al. [26] propose a tempo-
ral segmentation that identifies 12 different activities (e.g. head motion, sitting,
walking etc). Castro et al. [5] present an approach based on the combination of
a Convolutional Neural Network and a Random Decision Forest; this approach
is able to recognize images automatically in 19 activity classes. Ryoo et al. [27]
suggest a new feature representation for egocentric vision which captures both
the entire scene dynamics and the salient local motion observed in video. How-
ever, these approaches are designed to recognize a limited set of activities and
can be useful for specific applications only.

To address this limitation, some unsupervised temporal segmentation and
context change detection techniques have been presented, which are capable of
splitting an egocentric video into meaningful segments. Lu et al. [20] present an
approach that discovers the essential moments of a long egocentric video. First,
they segment the original video into a series of subshots. Then they represent
a short sequence in term of visual objects, that appear within it, using a bank
of object detectors. Dimiccoli et al. [9] present an approach for context change
detection, which combines low-level features and detection of semantic visual
concepts (high-level semantic labels are extracted using Imagga’s auto-tagging
system4). By relying on these features, a graph-cut technique is used to integrate
agglomerative clustering and an adaptive windowing algorithm [4].

All of these approaches exploit high quality videos and images taken by
egocentric cameras that can be worn, like GoPro, Narrative Clip, Looxcie, Google
Glass and Microsoft SenseCam. Although these cameras have become smaller
and cheaper, they are quite power-hungry. In fact, even if these devices take

4 https://imagga.com/solutions/auto-tagging.html
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snapshots periodically, for example every 15 or 30 seconds, they have a short
battery life ranging from one up to six hours. In addition, all presented solutions
leverage imagers that, in the best case, consume several tens or hundreds of mW.
These levels of power consumption are not affordable for continuous activity
monitoring within a power envelope of a truly wearable system. Therefore, these
solutions are not able to monitor human experience around the clock and their
application in real contexts is limited in the analysis of short recording only.

We follow, therefore, another direction in contrast with the above mentioned.
We explore how, even with very limited resolution, we can obtain context aware-
ness and understand, at least, a change of context in our day-life. We present
a context change detector for low-resolution images based on a wearable ego-
centric camera with ultra-low power consumption. An example of the task that
we want to achieve is shown in Fig. 1. Low-resolution images can’t “see” in the
way we usually interpret, as good quality pictures, but can give visual context
awareness, that can be exploited for context change detection. The system is
able to collect data 24/7 laying the basis for the long-term analysis of egocen-
tric vision activities. In this context, state of the art context change detection
techniques, that are based on results of semantic classifiers, cannot be adopted.
Therefore, we propose a novel approach that explores the use of Deep Convo-
lutional Neural Networks on low level resolution images. Experimental results
on a new challenging dataset demonstrate that the presented solution is able to
detect context changes with good precision.

The paper is organized as follows. Section 2 gives an overview of the hardware
system employed and presents the images and the pre-filtering stage, Section 3
describes in depth the Network architecture, Section 4 details the performance
and accuracy of our solution, while Section 5 concludes the paper and gives some
guidelines for future work.

2 Egocentric Vision Acquisition System

The egocentric vision acquisition system is based on a Texas Instrument Micron-
troller unit (MCU) and a low-power, low-resolution Stonyman Centeye imager.
It is powered by a Li-Ion battery and embeds an energy harvester, that can
supply the system while in operation or recharge the battery while the system
is in standby. The main advantage of this platform is that it can continuously
operate with a total power budget that is compatible with a small energy har-
vester or with 3,5 days of lifetime with a small (1Ah) battery. This platform is
a development of Infinitime device [21], a wearable bracelet with human body
harvesting. In Fig. 2 we show the core platform components and a picture of the
real device.

The computational unit is an up-to 16 MHz Microcontroller by Texas Instru-
ments, the MSP430FR5969 [23]. This MCU can run in several low power states,
turning off unused memories and peripherals, or scaling down the operating fre-
quency. The sensors that this board features are the above mentioned imager,
plus an analog microphone, a temperature sensor and an accelerometer.
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Fig. 2. Schema of the egocentric vision acquisition system.

2.1 Stonyman Imager

The embedded camera sensor, as already mentioned, is a Stonyman sensor by
Centeye [6]. The first step to acquire images from this analog sensor is to sample
them by an Analog to Digital Converter (ADC) and then store them in the
system FRAM. Then the platform can store images in an SD card or send them
through the NFC to a seconds device (e.g. a smartphone or a tablet).

The analog sensor can capture 112 × 112 pixel wide grayscale images at up
to 2.5 fps, while storing it into SD card. The power consumption of the imager
itself is orders of magnitude less than a digital CMOS sensors in the marketplace.
In fact, we observed that the power consumption while reading an image is 3.9
mW, while storing an image into SD card takes about 121 mW. In terms of
performance, acquiring an image and storing to SD card takes 400 ms. The
sending procedure via NFC is less expensive in terms of power budget, as it
costs 0.35 mW. In sleep mode the MCU consmes only 0,005 mW. So engaging
a battery of 1000 mAH, at 1 fps and storing images in the SD Card the device
can run for 3/4 days with a full recharge. Further experiments conducted by
Spadaro et al. [30] shows that with a kinetic harvester during running activity
the harvester can supply enough energy to collect 36 images per minute, while
walking activity permits to take 6 images per minute using the NFC to send the
image to second device. The ultra-low power consumption showed enables this
device to be used as a perpetual visual aware sensor.

Images captured by the imager and converted by the ADC are rather noisy.
A pre-filtering step is thus required to enhance the image quality. Next sec-
tion discusses the image quality issues and the noise removal technique that we
propose.

2.2 Images Pre-Processing

Images are sampled by a 12 bit ADC, so a normalization stage is needed to
convert them in a 8-bit single channel format. In particular, images sampled
from the Stonyman imager are mainly affected by static noise. Our noise removal
system deals with it. Therefore, noise removal is carried out by subtracting a
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Fig. 3. Image Denoising results.

mask to the images, which is created by averaging several pictures framing a
white background in a average light condition. In Figure 3 we show samples of
images before and after denoising. After this stage denoised images feeds the
temporal segmentation network described in next section.

3 Temporal Segmentation Network

Learning to detect context changes can be addressed as a similarity learning task.
In particular, we propose to learn a function f(x, y) that compares an image x
to another candidate image y of the same size and returns a high score if the
two images capture the same context and a low score otherwise. The function f
will be learned from a dataset of videos with labeled change points.

Given their widespread success in computer vision [28, 16, 10, 19], we will use
a deep ConvNet as the function f . The architecture of the network resembles that
of a Siamese network [12], which is the most used model for addressing similarity
learning with ConvNets. Siamese networks apply the same transformation φ to
both inputs, and then combine their representations using a distance function.
Therefore, function φ can be considered as an embedding, while the overall
network can be seen as a learnable distance computation model.

To train the network, we employ a discriminative approach, by collecting
positive and negative pairs. We define positive a pair of images which share the
same temporal context, and negative a pair of images sampled from different
contexts. At each iteration, we randomly sample a set of pairs P, and minimize
the following contrastive loss function:

L(w) =
1

|P|
∑

(xi,yi)∈P

yif(xi, yi) + (1− yi) max(0, 1− f(xi, yi)) (1)
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where yi ∈ {0, 1} is the ground truth label of each pair. We choose to define the
distance function f with respect to the embedding function φ through the cosine
similarity:

f(x, y) = 1− φ(x) · φ(y)

‖φ(x)‖ · ‖φ(y)‖
(2)

This choice, compared with more popular distance functions for Siamese net-
works, such as L1 or L2, presents a significant advantage. By computing the
angle between φ(x) and φ(y), and neglecting their magnitudes, it does not force
the network to bring its activations into a given numerical range, thus saving
training time and avoiding poor local minima.

4 Results

In this section we present the evaluation of our system in terms of accuracy in
context change detection. The evaluation has been done by collecting a dataset
of images that is described in the next section. In section 4.2 we describe the
evaluation measures, while in Section 4.3 we present accuracy in comparison
with two baselines and a state-of-art work.

4.1 Stonyman Dataset

To evaluate our results we collected a dataset of 29261 images named “Stonyman
Dataset”, from the name of the imager. All the images are collected at 1 fps and
from a single subject under several days. We define context change any point
of the sequence which delimits two temporal segments representing different
environments (i.e. we considered as context change going in a shop, enter in the
workplace, going off for a pause, catch the bus, etc).

In Table 1 we show the sets in which the dataset is divided and the number
of images collected per day, while the third column shows the number of images
of a subset of the dataset that we called “Stonyman Quality dataset”. This is an
improved version of the dataset obtained by pruning images with poor quality
or that cannot be understood by a human expert. In particular, three criteria
were considered:

Table 1. Stonyman and Stonyman Quality Datasets: set names, number of images and
number of context changes (CS).

Set Name Stonyman D. Stonyman Quality D. # of CS

2016-04-06 2734 2143 7
2016-07-05 12104 9257 13
2016-07-06 6256 5566 11
2016-07-07 - 9.00 2056 1544 5
2016-07-07 - 12.00 4367 4043 6
2016-07-08 868 424 3
2016-07-09 876 435 3

Total 29261 23412 48
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Fig. 4. Three examples, matching the three criteria used to remove images from Stony-
man Dataset to create Stonyman Quality Dataset.

1. Images with bubble effect (wavy images).
2. Images with poor luminosity or completely black.
3. Images where the subject that took the dataset cannot understand what’s

in it.

In Figure 4 an example of each of these defects is shown.

4.2 Evaluation metrics

For the evaluation of context scene detection, the classical precision-recall scheme
has been often used, with the important variation of adding a temporal tolerance
factor to detections and ground truth cuts. Therefore, a detection is considered
as positive if its distance to nearest ground truth cut is below a certain threshold,
otherwise it is considered as a false positive. False negatives are computed by
counting ground truth cuts which are further than the same threshold to the
nearest detected cut. Formally, given a threshold θ, a set of detected change
points D = {t0, t1, ..., tn} and the set of ground truth cuts C = {tg0, t

g
1, ..., t

g
m},

true positives, false positives and false negatives are computed as follows:

TP =

n∑
i=0

m
max
j=0

1(|ti − tgj | ≤ θ) FP =

n∑
i=0

1− m
max
j=0

1(|ti − tgj | ≤ θ) (3)

FN =

m∑
i=0

1− n
max
j=0

1(|tj − tgi | ≤ θ)

where 1(·) is an indication function that returns 1 when the given condition
is true, and 0 otherwise. F-Score is then derived from Precision and Recall as
usual.

Of course, the major drawback of this measure is the need to set an appro-
priate tolerance threshold. In our experiments, following previous works in the



8 Paci F., Baraldi L., Serra G., Cucchiara R., Benini L.

field [9], we set up a tolerance threshold of 5 frames, which given our frame rate
correspond to 5 seconds.

The problem we address can be regarded as a temporal segmentation task,
so appropriate measures can be taken from works that addressed temporal seg-
mentation in other scenarios. One of them is surely scene detection, in which
the objective is to temporally segment a broadcast video in semantically mean-
ingful parts. In this settng, a measure based on intersection over union has been
recently proposed [3]. Here, each temporal segment is represented as a closed
interval, where the left bound of the interval is the starting frame, and the right
bound is the ending frame of the sequence. The intersection over union of two
segments a and b, IoU(a, b), is written as

IoU(a, b) =
a ∩ b
a ∪ b

(4)

A segmentation of a video can be seen as a set of non-overlapping sequences,
whose union is the set of frames of the video. By exploiting this relation, [3]
defines the intersection over union of two segmentations C and D as:

IoU(C,D) =
1

2

(
1

#C

∑
a∈C

max
b∈D

IoU(a, b) +
1

#D

∑
b∈D

max
a∈C

IoU(a, b)

)
(5)

It is easy to see that Eq. 5 computes, for each ground-truth segment, the
maximum intersection over union with the detected segments. Then, the same
is done for detected segments against ground-truth ones, and the two quantities
are averaged.

4.3 Experimental Results

To quantitatively evaluate the difficulty of dealing with low resolution images,
we first present two baseline experiments. They both use Histogram of Oriented
Gradients [8] (HOG) as descriptors, and hierarchical agglomerative clustering
with euclidean distance to group images in contexts.

In the former baseline test (named CT1, Clustering Test 1), we fix the number
of clusters to eight, which is the number of unique contexts that we have in our
dataset: biking, car, home, office, walking, stairs, supermarket/shop, outdoor.
The idea behind this experiment is to test the ability of a popular hand-crafted
descriptor to distinguish between different contexts and places. HOG are ex-
tracted separately from each image and then descriptors are clustered in eight
clusters.

In the latter test (named CT2, Clustering Test 2), instead, agglomerative
clustering is applied with a different methodology, which resembles that of a
Siamese network. Images are elaborated in subsequent couples from the begin-
ning to end of the dataset. From each couple of images we extract HOG fea-
tures, and compute the element-wise L1 distance on feature vectors. We thus
get a feature vector for each couple, having the same dimensionality of the HOG
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Fig. 5. CT1 and CT2 baselines in terms of F-Score

Fig. 6. CT1 and CT2 baselines in terms of IoU

descriptor. The resulting features are then given as input to the agglomerative
clustering, but instead of looking for eight clusters as the previous baseline test,
we fix the number of clusters to two (similar and dissimilar pairs).

In Figure 5 and 6 we present the accuracy measured respectively with F-Score
and IoU on CT1 and CT2. We tested two different settings for HOG features
extraction. For both we used a window size of 112×112, block size of 56×56 and
block stride of 28× 28, and tested two different cell sizes: 28× 28 and 56× 56.
We selected these two settings after conducting a grid search on a subset of the
dataset, and picked the top two feature sizes in accuracy.

As it can be seen from the two charts, F-Score and IoU values are very low,
thus revealing that hand-crafted features are not well suitable for low-resolution
noisy images. The best accuracy in terms of F-Score is achieved with CT1, since
the solution of clustering into eight classes is a more easy task, and we see a
slight improvement with Stonyman Quality with respect to the entire dataset.
In Figure 6 the same results are evaluated in terms of IoU. All settings results
in similar values of IoU, and this is due to the completely different nature of the
two performance measures.
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Table 2. F-Score and IoU results of our system on Stonyman and Stonyman Quality
datasets

Stonyman D. Stonyman Quality D.
F-Score IoU F-Score IoU

2016-04-06 0.571 0.655 0.667 0.608
2016-07-05 0.216 0.411 0.357 0.539
2016-07-06 0.105 0.590 0.286 0.375
2016-07-07 - 9.00 0.133 0.397 0.625 0.791
2016-07-07 - 12.00 0.217 0.387 0.500 0.712
2016-07-08 0.143 0.618 0.400 0.552
2016-07-09 0.193 0.346 0.267 0.520

Average 0.226 0.486 0.443 0.585

Moving to the proposed approach, we employed the pre-trained 16 layers
model from VGG [28] as the embedding function φ, since it is well known for
its state-of-the-art performances on image classifications tasks, while still being
a simple and lightweight model for modern GPUs. The overall network is then
trained end-to-end using Stochastic Gradient Descent with learning rate 0.001
and batches of 20 couples.

In Table 2 we present the results of our system on the Stonyman and Stony-
man Quality datasets. The performances are reported in terms of F-Score and
IoU for each set. Notice that Stoneyman Quality compared to Stonyman pro-
duce 0.2 improvement in F-Score and 0.1 improvement in IoU, we attribute
this behavior mostly to wavy images that are removed in Stonyman Quality.
These distort images produces an altered feature, that make the problem more
challenging.

Table 3 present a comparison of the two baselines (CT1 and CT2) and our
system. We can observe that the techniques based on scene clustering achieve low
performance. Whereas our system obtains promising results in both scenarios.
We could not compare our solution with a state of the art Scene Clustering
System called SR-Clustering [9], because, as mentioned before, a key element of
their technique is the extensively usage of high-level semantic classifiers, which
don’t work with our low-resolution snapshots. This is clearly shown in Figure 7,
in which we present some examples of predictions obtained on our low-resolution
images by the classifiers adopted in [9] and the corresponding Narrative Clip high
quality image.

Table 3. Comparison results between the proposed solution and the two baselines
(CT1 and CT2) on Stonyman and Stonyman Quality datasets.

Stonyman D. Stonyman Quality D.
F-Score IoU F-Score IoU

CT1 0.019 0.170 0.032 0.192
CT2 0.006 0.179 0.009 0.204
Our System 0.226 0.486 0.443 0.585
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Fig. 7. Imagga predicted tags on the same images shot with Stonyman (Grayscale)
and Narrative (Color)

Table 4. Performnace results of our system on EDUB-Seg

F-Score IoU

Subject1 1 0.563 0.494
Subject1 2 0.545 0.536
Subject2 1 0.448 0.466
Subject2 2 0.500 0.473
Subject3 1 0.500 0.418
Subject3 2 0.400 0.574
Subject4 1 0.476 0.546
Subject4 2 0.774 0.560

Average 0.521 0.510

Table 5. Accuracy of our system and SR-Clustering in EDUB-Seg Set 1 Dataset

F-Score

SR-Clustering 0.69
Our System 0.521

Therefore even if our system cannot exploit an high-level semantic classifier,
we tested it on the reference dataset of SR-Clustering to show that results on
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color high quality images are in-line with the Stonyman Quality low-resolution
images.

The SR-Clustering work proposes a dataset called EDUB-Seg which is com-
posed of two sets: EDUB-Seg Set 1 and EDUB-Seg Set 2. The only publicly
available one is EDUB-Seg Set 1. This dataset is composed 4912 color images
(512 × 512 pixels) collected by 4 subjects with a Narrative Clip camera [24] at
2 fpm. In Table 4 is shown our results on this dataset. We trained the network
with the technique leave-one-out: for each subset the network is trained on all
the other subsets. The results shows an improvement in F-Score compared to
Stoneyman Quality dataset, while on IoU there is a slight loss. This shows that
in this dataset the low framerate is balanced by the quality of the images.

Lastly in Table 5 we report the results of SR-Clustering on EDUB-Seg set 1
and the average F-Score that we achieve with our system.

5 Conclusion and Further Work

In this paper we proposed a context change detection system. First, we presented
an egocentric vision device with ultra-low power consumption that can capture
images round the clock. Then, we suggested a similarity learning approach, based
on Siamese ConvNets, that is able to deal with grayscale low-resolution snap-
shots. We finally run extensive experiments in real scenarios, showing the robust-
ness and efficacy of the proposed method with respect to related approaches.

On future works we will explore an automatic technique for discarding images
without a relevant semantic content. Moreover we will focus on embedding the
network processing in an ultra-low power budget. The ultra-low power trend
encourages deep-network based approaches [2] [7]. Experts in computer vision
and also VLSI and computer architecture communities are focusing on these
approaches with promising results in terms of energy efficiency.
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