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The Bag of Words paradigm has been the baseline from which several successful image classification
solutions were developed in the last decade. These represent images by quantizing local descriptors
and summarizing their distribution. The quantization step introduces a dependency on the dataset, that
even if in some contexts significantly boosts the performance, severely limits its generalization capa-
bilities. Differently, in this paper, we propose to model the local features distribution with a multivariate
Gaussian, without any quantization. The full rank covariance matrix, which lies on a Riemannian
manifold, is projected on the tangent Euclidean space and concatenated to the mean vector. The resulting
representation, a Gaussian of Local Descriptors (GOLD), allows to use the dot product to closely
approximate a distance between distributions without the need for expensive kernel computations.
We describe an image by an improved spatial pyramid, which avoids boundary effects with soft assign-
ment: local descriptors contribute to neighboring Gaussians, forming a weighted spatial pyramid of GOLD
descriptors. In addition, we extend the model leveraging dataset characteristics in a mixture of Gaussian
formulation further improving the classification accuracy. To deal with large scale datasets and high
dimensional feature spaces the Stochastic Gradient Descent solver is adopted. Experimental results on
several publicly available datasets show that the proposed method obtains state-of-the-art performance.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Object and Scene Recognition have been a major research direc-
tion in computer vision, and, in particular, the task of automatically
annotating images has received considerable attention. Systems
extract some description from a training set of images, train a clas-
sifier and then can be used to perform their task on new images.
The current ‘‘standard’’ approach for this task is some derivation of
the Bag of Words (BoW) [1], and consists mainly of three steps: (i)
extract local features, (ii) generate a codebook and then encode
the local features into codes, (iii) pool all the codes together to gen-
erate a global image representation. In this approach a key step is the
codebook generation, because it is the base to define a high-dimen-
sional Bag of Words histogram. Typically this is performed through
clustering methods and the most common approach is the use of k-
means clustering, because of its simplicity and convergence speed.

However, introducing a quantization of the feature space tightly
ties dataset characteristics to the features representation, in the
choice of both the position and the number of cluster centers to
use. For the codewords positions, the quantization is learned from
the training set, therefore the cluster centers reflect the training
data distribution. The optimal number of cluster centers varies
depending on the dataset. For example, in [2], the best accuracy
using regular BoW is reached at 4k clusters for the Caltech-101
dataset, while, even if the improvement is progressively lower, in
PASCAL VOC 2007 it does not reach saturation even with 25k clus-
ter centers. Another example of this ‘‘hidden’’ dataset dependency
inclusion may be found in many specializations of the BoW
approach. [3,4] propose two different solutions to learn category
specific codebooks and show how this is able to improve the
descriptor ability to discriminate between similar categories.

The codebook generation step has been introduced in order to
obtain a fixed length representation of the distribution of the local
features of an image. This is not strictly necessary, since the
descriptors distribution could be directly modeled with a paramet-
ric distribution [3,5], and the parameters obtained on the single
image may provide a summary of the local descriptors. In some
contexts though, the information coming from the specific dataset
characteristics is able to significantly boost the performance of the
classification system.

Based on these considerations, in this paper we propose a
solution to allow the descriptors to be obtained either in a dataset
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independent way or to leverage training information in their
construction. Using a multivariate Gaussian distribution with full
rank covariance matrix or a mixture of them it is possible to tune
the system based on the context. We also show how to embed this
descriptors in the Spatial Pyramid Representation [6] further
removing border effects artifacts. The final image descriptor is then
used both with an off-the-shelf batch classifier and with the
Stochastic Gradient Descent on-line solver [7], which allows to
deal with large scale datasets and high dimensional feature spaces.

We name our method Gaussian of Local Descriptors (GOLD) and
demonstrate its effectiveness for automatic image annotation and
object recognition. The main contributions of our work are:

� we provide a flexible local feature representation leveraging
parametric probability density functions, that can be indepen-
dent of the image archive (e.g. for collections that change
dynamically) or specific to dataset characteristics;
� our method employs the projection of the full rank covariance

matrix from the Riemannian manifold to the tangent Euclidean
space to obtain a fixed length descriptor suitable for linear
classifiers based on dot product;
� we conduct experiments on several public databases (Caltech-

101, Caltech-256, ImageCLEF2011, ImageCLEF2013, PASCAL
VOC07). Some examples are reported in Fig. 1. The results
demonstrate the effectiveness of utilizing our descriptor over
different types of local features, both in dataset dependent
and independent settings.

This paper is organized as follows. We introduce the state of the
art on image descriptors focusing on encodings, normalizations
and pooling strategies in Section 2. Then we elaborate the formu-
lation of the GOLD descriptor in Section 3, and its combination
with the spatial pyramid representation in Section 4. In Section 5
the extension to the mixture of Gaussian distributions is presented.
We conduct extensive experiments in Section 6 to verify the
advantage of our method for automatic image annotation and
object recognition. Conclusions are drawn in Section 7.

2. Related work

The basic component of all object recognition and scene under-
standing systems are local descriptors [8]. The most famous and
effective ones are SIFT [9], and all their color variations [10].

After describing images with unordered sets of local descrip-
tors, we would like to directly compare them in order to get infor-
mation on the images similarities. The problem could be tackled
with solutions inspired by the assignment problem, but this would
be infeasible as soon as we move away from tiny problems. For this
reason, research has focused on finding a fixed length summary of
local descriptors density distribution.

The original solution, named Bag of Words, consists in finding a
set of codewords (obtained by the k-means algorithm) and assign-
ing each local feature to a codeword. The final descriptor is given
by a histogram counting the number of local features assigned to
every codeword (cluster center) [1]. This last strategy was later
referred to as hard-assignment.

A histogram is obviously a crude representation of the local
features continuous density profile, it introduces quantization
errors and it is sensitive to noise and outliers [11]. Thus, it would
appear that by improving this density representation to more accu-
rately represent the input feature set the classifiers performance
could be improved as well [3]. For example, in [12] the hard-
assignment of features is replaced with soft-assignment, which
distributes an appropriate amount of probability mass to all code-
words, depending on the relative similarity with each of them.
The Locality-constrained Linear Coding [13] projects each descrip-
tor on the space formed by its k-nearest neighbors (with small k;
they propose k ¼ 5). This procedure corresponds to performing
the first two steps of the locally linear embedding algorithm [14],
except that the neighbors are selected among the codewords of a
dictionary rather than actual descriptors, and the weights are used
as features instead of being mere tools to learn an embedding.

In [15] two supervised nonnegative matrix factorizations are
combined together to identify latent image bases, and represent
the images in this bases space; in [16] the authors propose to com-
bine structures of input features and output multiple tags into one
regression framework for multitag image annotation.

Fisher encoding [17], models the codewords with a Gaussian
Mixture Model (GMM), restricted to diagonal covariance matrices
for each of the k components of the mixture. Then, they capture
the average first and second order differences between the image
descriptors and the centers of the GMM.

The Vector of Locally Aggregated Descriptors [18] (VLAD) can be
seen as a simplification of the Fisher kernel. Each local descriptor is
associated to its nearest visual word. The idea of the VLAD descrip-
tor is to accumulate, for each visual word, the differences of the
vectors assigned to it, thus characterizing the distribution of
the vectors with respect to the center. As for Fisher encoding, the
descriptors are pooled together with averaging. Recently a compre-
hensive study concerning feature coding methods that summarizes
their main characteristics including motivations and mathematical
representations has been presented in [19].

The techniques discussed so far have all focused on improving
the local descriptors encoding, relaying on training data for code-
words generation. Given that there are a great number of unla-
beled images available, some works focused on semi-supervised
learning in order to leverage unlabeled data for large-scale image
annotation [20].

In order to overcome the dataset dependency, some authors
tried to build a codebook in a fully data-independent way. In
[21] the feature space is directly discretized using a regular lattice.
With four subdivisions for each dimension, the number of bins is in
the order of 1077, most of which are obviously empty. They thus
employ a hash table and store only the non-empty bins. Constant
time table lookup, i.e., independent of the size of the visual vocabu-
lary, can then be guaranteed. In [22] it is shown that this fixed
quantization method performs significantly worse then other tech-
niques, probably due to the fact that it splits dense regions of the
descriptor space arbitrarily along dimension axes, and the bins
do not equally split the unit hypersphere which SIFT covers, result-
ing in a wildly uneven distribution of points. Moreover they further
highlight on Oxford [23] and Paris [24] datasets that the perfor-
mance on drop of quantization approaches when generating code-
words from a dataset and using them on another. Similar
conclusions were also found in [25]. In short, referring to a con-
figuration as dataset1/dataset2 (meaning that codewords are gen-
erated by dataset1 and used them for retrieval on dataset2), the
Oxford/Oxford combination provides a mAP value of 0.673, against
a Paris/Oxford mAP of 0.494. In a recent work [26], to avoid to
recompute codewords at every dataset change, a particularly effec-
tive solution for cluster center adaptation, applicable to VLAD
descriptors, is proposed. This, combined with an appropriate nor-
malization step, shows a remarkable improvement when the code-
words are generated from a different dataset. It is significant to
note that the more different the codeword generation dataset is,
the worse the performance are. Although the proposed adaptation
is particularly efficient, it still requires to apply a transformation to
all VLAD descriptors of the dataset.

A different strategy was proposed in [3], in order to avoid code-
word generation completely, and in this way intrinsically remove



Fig. 1. Sample images taken from the five datasets used in the experimental section. They pose different challenges both for object detection and multiple concepts
annotation.
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any dataset dependency. The idea is to first model each set of vec-
tors by a probability density function (pdf) and then compare them
with a kernel defined over the pdfs. The advantage of modeling
each image’s set of descriptors independently are that each image
model is tailored to the specific descriptor set and hence should be
more accurate. This solution received little attention, because of
the need of using specific kernels for image comparison, again pos-
ing scalability issues. Recently Carreira et al. [5] proposed to use
second-order analogs of the most common first-order pooling
operators to describe arbitrary shaped regions in semantic seg-
mentation contexts. In particular, they focused on multiplicative
second-order interactions (e.g. outer products), together with
either the average or the max operators. Following the techniques
used in [27], they managed to obtain a region descriptor suitable
for linear classifiers. It can be noted that, when average-pooling
is used, this is exactly the proposal of [3], when the choice for
the pdf is a zero-mean Gaussian distribution, improved with the
mapping which allows to avoid the kernel computation between
pdfs.

We propose to follow this latter way of modeling local features
distributions, by choosing a multivariate Gaussian distribution
with mean and full covariance as the reference pdf. By employing
the log-Euclidean projection of [27], detailed in the next section,
we can transform the distribution to a vectorial representation
which allows to use the dot product to closely approximate a
distance between distributions. Thanks to the fact that this repre-
sentation is indeed modeling a Gaussian distribution, we can fur-
ther extend it by changing the pdf to a mixture model, still
obtaining a linear space representation. The idea of computing a
Gaussian mixture model on the training set and then adapt it to
each individual image as a descriptor was introduced in [28].
Although we share similar intentions, the following points mark
the differences with their proposal: (i) they run a full EM algorithm
on every image, while we only use the posterior probability to
weight each feature contribution to every component, (ii) they
employ a global diagonal covariance matrix, while we use a full
one, (iii) they assume that this covariance matrix is fixed through-
out the whole corpus, i.e. they do not re-estimate the image speci-
fic covariance matrix, (iv) the final image descriptor is dependent
only on adapted weights and means of the various components,
each scaled by the globally estimated covariance matrices.

Another proposal is strictly related to our approach: the recent-
ly introduced Vector of Locally Aggregated Tensors (VLAT) [29].
Their approach extends the VLAD descriptor by aggregating tensor
products of local descriptors. They first compute a visual codebook
of visual words over a sample image set using k-means. To com-
pute the signature of an image, for each cluster, they aggregate
with summation the centered tensors of centered descriptors. Each
aggregated tensor is flattened into a vector and concatenated for all
clusters. Strong similarities can be observed with our proposal,



G. Serra et al. / Computer Vision and Image Understanding 134 (2015) 22–32 25
but: (i) we theoretically motivate our proposal by modeling a set of
descriptors with a multivariate Gaussian distribution, while the
second order tensor used in VLAT is centered w.r.t. the cluster
mean; (ii) they do not normalize the descriptor with respect to
the cardinality of the feature set; (iii) the main difference is that
VLAT do not employ the log-Euclidean projection and simply sim-
ply vectorize the final tensors, assuming that these can be used
with the Euclidean metric. Following our Gaussian motivation,
we also include the mean to the final descriptor. The contributions
of our choices are analyzed in Section 6.

As an additional improvement, we apply a spatial soft assign-
ment over the spatial pyramid representation. A schematization
of the proposed approach is presented in Fig. 2.
3. GOLD: Gaussian of Local Descriptors

In order to provide a tractable description of the inherently
unknown pdf of an unordered set of feature vectors, we employ
the most classical parametric distribution, that is the multivariate
Gaussian distribution. Let F ¼ ff1 . . . fNg be the set of d-dimensional
local features and suppose that they are independent and identical-
ly distributed samples from a multivariate Gaussian distribution,
defined as

Nðf; m;CÞ ¼ 1

j2pCj
1
2

e�
1
2ðf�mÞT C�1ðf�mÞ; ð1Þ

where j � j is the determinant, m is the mean vector and C is the

covariance matrix; f;m 2 Rd and C 2 Sd�d
þþ , and Sd�d

þþ is the space of
real symmetric positive semi-definite matrices. The mean and
covariance parameters are estimated from F as follows:

m ¼ 1
N

XN

i¼1

f i; ð2Þ

C ¼ 1
N � 1

XN

i¼1

ðf i �mÞðf i �mÞT : ð3Þ

The estimated covariance matrix encodes information about the
variance of the features and their correlation, and, together with
the mean, provides a good insight on the set of features F. The space
of covariance matrices can be formulated as a differentiable mani-
fold, but not as a vector space (e.g. the covariance space is not
closed under multiplication with a negative scalar). Unfortunately,
many efficient machine learning algorithms assume that the data
Dense
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Fig. 2. A schematization of the GOLD descriptor. An image is represented as a Weighted
tangent space and concatenated to the mean to obtain the final region descriptor.
points form a vector space where dot product is defined, therefore
they cannot readily work with covariance matrices.

It is important to consider that a manifold is a topological space
that is locally similar to a Euclidean space. In particular a Rieman-
nian manifold is a differentiable manifold in which each tangent
space has an inner product, which varies smoothly from point to
point [27].

Recently, it has been shown by Pennec et al. [30] that it is possible
to endow the space of covariance matrices with an affine-invariant
Riemannian metric (thus defining a Riemannian manifold), which
allows to map covariance matrices to points in the Euclidean space.

The first step is the projection of the covariance matrices on an
Euclidean space tangent to the Riemannian manifold, at a specific
tangency matrix P. The second step is the extraction of the
orthonormal coordinates of the projected vector. In the following,
matrices (points in the Riemannian manifold) will be denoted by
bold uppercase letters, while vectors (points in the Euclidean
space) by bold lowercase ones.

More formally, the projected vector of a covariance matrix C is
given by:

tC ¼ logPðCÞ , P
1
2 log P�

1
2CP�

1
2

� �
P

1
2 ð4Þ

where log is the matrix logarithm operator and logP is the manifold
specific logarithm operator, dependent on the point P to which the
projection hyperplane is tangent. The matrix logarithm operators of
a matrix C can be computed by eigenvalue decomposition
(C ¼ UDUT ); it is given by:

logðCÞ ¼
X1

k¼1

ð�1Þk�1

k
ðC� IÞk ¼ UlogðDÞUT : ð5Þ

The orthonormal coordinates of the projected vector tC in the
tangent space at point P are then given by the vector operator:

vecPðtCÞ ¼ vecI P�
1
2tCP�

1
2

� �
ð6Þ

where I is the identity matrix, while the vector operator on the
tangent space at identity of a symmetric matrix Y is defined as:

vecIðYÞ ¼ y1;1

ffiffiffi
2
p

y1;2

ffiffiffi
2
p

y1;3 . . . y2;2

ffiffiffi
2
p

y2;3 . . . yd;d

h i
: ð7Þ

Substituting tC from Eq. (4) in Eq. (6), the projection of C on the
hyperplane tangent to P becomes

c ¼ vecI log P�
1
2CP�

1
2

� �� �
: ð8Þ
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Pyramid of Gaussians of local descriptors. The covariance matrix is projected on the
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Thus, after selecting an appropriate projection origin, every covari-
ance matrix is projected to an Euclidean space. Since c is a symmet-

ric matrix of size d� d a ðd2 þ dÞ=2-dimensional feature vector is
obtained.

As observed in [31], by computing the sectional curvature of the
Riemannian manifold [32], i.e., the natural generalization of the
classical Gaussian curvature for surfaces, it is possible to show that
this space is almost flat. This means that the neighborhood relation
between the points on the manifold remain unchanged, wherever
the projection point P is located. Therefore, from a computational
point of view, the best choice for P is the identity matrix, which
simply translates the mapping into applying the vecI operator to
the standard matrix logarithm. This also frees us from the problem
of optimizing the projection point for the specific data under con-
sideration, leading to a generally applicable descriptor.

Finally, the unordered set of feature vectors F can be described
by a Gaussian of Local Descriptors (GOLD), that is the concatena-
tion of the mean and the orthonormal projection of the covariance
matrix.
3.1. Normalization

In image classification systems, feature normalization tech-
niques have the potential to greatly decrease the error rate of the
classification, and thus increase the overall performance. When
dealing with classifiers relaying on dot-product (such as linear
SVMs) there is some recent convergence on the combined use of
power normalization and unit length normalization using a L2

metric [17,2].
Power normalization consists in applying, to each dimension of

the descriptor, the function:

f ðxÞ ¼ signðxÞjxja with 0 < a < 1: ð9Þ

Perronnin et al. [17] justify the use of power normalization with the
empirical observation that it has the ability of ‘‘unsparsifying’’ the
representation, making it suitable for dot-product similarity. A
different interpretation is provided in [33] where it is shown that
applying the square root (a special case of the power normalization
with a ¼ 0:5) is equivalent to employ the Hellinger’s kernel (Bhat-
tacharyya’s coefficient). Moreover Safadi and Quénot [34] tested
different normalization approaches and distance measures on sev-
eral image descriptors, and observed that power normalization con-
sistently leads to better performance. Moreover they optimized the
a parameter for every descriptor and distance combination, and
concluded that the optimal value when using dot product is
approximately 0.5.

Motivated by these results, we apply power normalization to
the GOLD vector, with a ¼ 0:5. While a optimization could slightly
Fig. 3. Bilinear interpolation applied to the spatial pyramid. The images depict the weight
of the spatial region under consideration, in the case of a 2� 2 regions (level one of the
descriptor placed on the border between two spatial regions will be equally considered fo
legend, the reader is referred to the web version of this article.)
improve the performance, it would lead to a dataset-dependent
tuning, again in contrast with our purposes.
4. Weighted spatial pyramid of GOLD

A standard way of introducing weak geometry in a Bag of
Words representation is the use of spatial pyramids [6]. A spatial
pyramid is a collection of feature histograms computed over subre-
gions defined by a multilevel recursive image decomposition. At
level zero, the decomposition consists of just a single region, and
the representation is equivalent to the feature histogram of the
entire image. At level one, the image is subdivided into four quad-
rants, yielding four feature histograms, and so on. The concept has
been extended to several image representations by stacking the
descriptors of every spatial region in a single vector.

However in this kind of representation the local features are
hard-assigned to only one subregion, making the representation
sensitive to border effects. For this reason, we follow an approach
similar to [35], and apply a bilinear interpolation to spatial pyra-
mids. We compute the GOLD vector of each region R, centered in
ðcx; cyÞ and with dimensions w� h, on the local features that fall
in the neighborhood R0 with dimensions 2w� 2h, again centered
at ðcx; cyÞ. A local feature f, computed at ðx; yÞ, is then weighted,
with respect to R, by
wðf;RÞ ¼ 1� x� cx

w

� �
1� y� cy

h

� �
: ð10Þ
A visual representation of the weights assigned to different
positions in the case of a 2� 2 regions is provided in Fig. 3.

In the original spatial pyramid formulation [6], histogram inter-
section was the kernel chosen to compare unnormalized BoW
descriptors. This allowed to identify matches at different levels,
and remove matches at finer levels (highly significant) from those
at coarser ones (less significant). This led to the usually adopted
per-level weights of 0.25, 0.25, 0.5, from coarse to fine, in a three
levels pyramid. Later works tried to improve over the original pro-
posal by learning the level weights [36], or the single regions
weights [37,38]. Again, these solutions are tailored for a specific
dataset and lack of generality. A different strategy is instead fol-
lowed in HOG descriptors, and later employed on the spatial pyra-
mid by Harzallah et al. [39], that is independent L2 normalization
per region before constructing the final descriptor. This solution
was later confirmed as the best choice in [17] and in [2].

GOLD descriptors are extracted from the weighted set of local
features of every region, then they are power normalized. Finally,
L2 normalization is employed, in order to avoid any learning step.
s assigned to the local descriptors based on their positions with respect to the center
spatial pyramid). The weights range from 1 (red) to 0 (blue). This means that a SIFT
r both region descriptors. (For interpretation of the references to color in this figure
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5. Mixture of GOLD

A possible extension of GOLD is to improve the model describ-
ing the local descriptors probability distribution. A natural choice
would be to employ a Gaussian Mixture Model (GMM) instead of
a single Gaussian. Unfortunately this is not as straightforward as
it might seem, since the comparison of two GMMs would require
the use of a complex kernel: the main problem for comparing
GMMs is how to choose which component should be compared
to whom, that is solving an assignment problem. The main advan-
tage of GOLD was exactly the ability of avoiding kernel computa-
tions for efficient learning. We need a solution to perform a
similar mapping leveraging a mixture of Gaussians.

We propose to start from a K-components GMM, learned from
the training set with the EM algorithm:

pðfjHÞ ¼
XK

k¼1

xkNðf;lk;RkÞ ð11Þ

where H ¼ fx1;l1;R1; . . . ;xK ;lK ;RKg. Similarly to what is done in
soft quantization schemes [12], we can partially assign features to
the k-th GMM component, according to the posterior probability
for it:

Prðkjf;HÞ ¼ xkNðf; lk;RkÞPK
j¼1xjNðf;lj;RjÞ

ð12Þ

It is now possible to build K multivariate Gaussian distributions
from all the image descriptors, weighting them with the
posterior probability of the k-th component. As in the maximiza-
tion step of the EM algorithm, we estimate the Gaussian distri-
bution parameters of the k-th component with the following
equations:

mk ¼
PN

i¼1f iPrðkjf i;HÞPN
i¼1Prðkjf i;HÞ

; ð13Þ

Ck ¼
PN

i¼1ðf i �mkÞðf i �mkÞT Prðkjf i;HÞPN
i¼1Prðkjf i;HÞ

: ð14Þ

The newly obtained Gaussian distributions are related to the
GMM components originally estimated on the training set, but
adapted to the specific set of local features. Their parameters can
thus be used as descriptors for the local features distribution. As
in Section 3 each Gaussian distribution can be mapped to a GOLD
descriptor, obtaining a tuple of K GOLD vectors. These are then con-
catenated following the index of the corresponding GMM compo-
nent. This allows us to directly compare images using a dot
product operation, removing the need for non-linear kernel
computations.

The concatenation of the K GOLD vectors is now our adapted
projection of the original mixture. We will refer to this extension
as Mixture-GOLD.

It is important to note that while this allows to have a highly
informative descriptor for the feature space, it is based on a
reference distribution (the GMM), whose parameters have been
estimated on a training set.

The proposed technique is thus able to easily move from a
codebook independent image description to a codebook
based one, making it adaptable to different contexts and usage
scenarios.
1 http://imagelab.ing.unimore.it/files/GOLD_image_classification.zip.
6. Experimental results

In order to analyze the proposed approach in different scenar-
ios, we perform the experiments on five datasets: Caltech-101, Cal-
tech-256, ImageCLEF 2011, ImageCLEF 2013 and PASCAL VOC07
(Fig. 1). Caltech datasets permit a wide comparison with a large
number of techniques, while the ImageCLEF and PASCAL VOC07
datasets allow analyzing our proposal in less constrained and
large-scale collections. In these two scenarios all the reported
experiments are obtained with the dataset independent GOLD
descriptor (single Gaussian) and the Mixture-GOLD descriptor
showing the flexibility of our solution. In all experiments, SIFT fea-
ture descriptors and their color variations are extracted at four
scales, defined by setting the width of the spatial bins to 4, 6, 8,
and 10 pixels over a dense regular grid with a spacing of 3 pixels.
We use the function vl_phow provided by the vl_feat library
[40] with default settings.

For larger datasets (Caltech-256, ImageCLEF 2011, ImageCLEF
2013), we used the Stochastic Gradient Descent (SGD) algorithm
[41], introduced for SVM classifiers training, because it is an online
method and can be easily parallelized to simultaneously train sev-
eral classifiers. We randomize the data on disk and we load the
data in chunks which fit in memory. We then train the classifiers
on further randomizations of the chunks, so that different epochs
(one training epoch is defined as providing all training samples
to the classifier once) will get the chunks data with different
orderings.

The source code for the computation of our descriptors is
publicly available for download to allow the community to
reproduce our results.1

6.1. Caltech-101 and Caltech-256

The Caltech-101 dataset is one of the most commonly used data-
set for object recognition. It contains 9144 images from 101 object
categories and one background category. The object categories can
be very complex but a common viewpoint is chosen, with the object
of interest at the center of the image at a uniform scale. The number
of images per category varies from 31 to 800. The Caltech-256 data-
set consists of 30,607 images divided in 256 categories (with at
least 80 images each). It presents a much higher variability in object
size, location, and pose with respect to Caltech-101.

For both datasets we follow their respective common
experimental settings: for Caltech-101 we randomly select 5, 10,
15, 20, 25, and 30 training images and at most 50 testing images
for each category (this results in 3060 images for training and
2995 for testing in the 30 images test); for Caltech-256 we consider
30 and 60 training images and at most 50 for testing per class. We
report the Mean Recognition Rate per class, i.e. the results are nor-
malized based on the number of testing samples in that class and
averaged over five independent runs. In all the experiment on Cal-
tech datasets we extract SIFT descriptors, and images are analyzed
with a 3 level pyramid, respectively partitioned in 1� 1; 2� 2 and
4� 4 blocks.

The first experiment highlights the individual contribution of
the mean and the projected covariance to the performance of the
GOLD descriptor on Caltech-101 using 30 training images per class.
The mean alone is obviously a very poor representation and there-
fore achieves a Mean Recognition Rate of 30.19%, while the project-
ed covariance obtains 80.83%. Concatenating the mean and the
covariance, also due to a very high difference in dimensionality,
slightly improves the performance, arriving to 80.92%.

Furthermore, to present the respective contributions of the pow-
er normalization and descriptors weighting steps, we report in Fig. 4
the performance gain given by these two procedures. Note that the
Pyramidal-GOLD, i.e. the Gaussian of local descriptors with the clas-
sical spatial pyramid procedure, shows interesting results (P-GOLD
w/o power norm), but the usage of the power normalization

http://imagelab.ing.unimore.it/files/GOLD_image_classification.zip


Table 2
Mean Recognition Rate per class using 30 images training for five runs on Caltech-
101.

Run 1 Run 2 Run 3 Run 4 Run 5 Average

GOLD 80.53 82.38 79.90 80.45 81.33 80.92
Mixture-GOLD 80.61 82.43 79.95 80.56 81.34 80.98
VLATONE [29] 76.39 77.38 74.61 75.08 76.56 76.00
VLAT [29] 78.58 80.24 78.50 78.31 78.77 78.88
HKM [33] 75.21 73.89 73.00 74.14 76.87 74.62

Table 1
Mean Recognition Rate per class on Caltech-101 when PCA is applied on SIFT
descriptors. D is the number of principal components considered.

PCA 30 Training

GOLD D = 128 80.92
GOLD D = 80 77.43
GOLD D = 64 77.13
GOLD D = 48 76.75
GOLD D = 32 74.70

Table 3
Comparison with the state-of-the-art for Caltech-101.

15 Training 30 Training

GOLD 73.39 80.92
Mixture-GOLD 73.46 80.98
Bo et al. [42] 60.50 73.86
Grauman et al. [43] 50.00 58.20
Jia et al. [44] – 75.30
Jiang et al. [45] 67.50 75.30
Liu et al. [46] – 74.21
Zhang et al. [47] 69.58 75.68
Tuytelaars et al. [48] 69.20 75.20
Wang et al. [13] 65.43 73.40
Yang et al. [49] 67.00 73.20
Carreira et al. [5] – 79.20
Lazebnik et al. [6] 56.40 64.60
Chatfield et al. [2] – 77.78
Duchenne et al. [50] 75.30 80.30
Zeiler et al. [51] 83.80 86.50
He et al. [52] – 93.42
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Fig. 4. Performance of our approach on Caltech-101 for different settings, reported
with different number of training samples. P-Gold w/o power norm: the Gaussian
of local descriptors with the classical spatial pyramid procedure without the power
normalization. P-Gold: the Gaussian of local descriptors with the classical spatial
pyramid procedure with the power normalization. WP-GOLD (w/o) power norm:
the Gaussian of weighted local descriptors of every spatial region without the
power normalization. WP-GOLD: the Gaussian of weighted local descriptors of
every spatial region with the power normalization.
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(P-GOLD) enhances the accuracy of about three percentage points. A
similar improvement is obtained by including the weighting step
(WP-GOLD w/o power norm). The combined use of both techniques
(WP-GOLD), that weights the SIFT descriptors based on their spatial
distribution and applies power normalization, further improves the
accuracy of about three percentage points. For simplicity, we will
refer to this complete solution as GOLD.

Although the GOLD achieves a very good performance, the
dimensionality of the final descriptor is quite large. For this rea-
son, in Table 1 we present performance obtained by reducing
the dimensionality of SIFT descriptors with PCA. After an initial
drop, the performance slightly decreases until the dimensionality
becomes 48, while for D ¼ 32 we can observe a second
important drop. These results motivate our choice of maintain-
ing original (not reduced) SIFTs when using the single-Gaussian
GOLD. However, when the Mixture-GOLD is employed, PCA
becomes a necessary evil, in order to still have a tractable
descriptors size.

As pointed out by Chatfield et al. [2] several works present
results on the Caltech-101 dataset. However, missing details in
the description of the methods or different tuning of the various
components often make a fair comparison impossible. For this rea-
son we firstly compare our method to VLAT [29] (that is the most
similar approach) and the recently proposed approach by Vedaldi
and Zisserman [33], since they provide their code.2 Results are
2 http://www.vlfeat.org/applications/caltech-101-code.html.
shown in Table 2. For all of these methods we use the same
experimental settings (same local features, same spatial pyramid
and same classifier). For Mixture-GOLD and VLAT we use a codebook
of 512 clusters (K = 512) and SIFT are compressed to 48 dimensions
using PCA, following [29]. We call VLATONE the VLAT descriptor with
K = 1 and SIFT without PCA compression, that is directly comparable
with our single-Gaussian GOLD. When using a single cluster, the
VLATONE descriptor describes the second order variation with respect
to the training set mean, and this suffers from the lack of specificity
with respect to the single image, but mostly from the lack of the pro-
jection on the tangent space. Rising the number of clusters definitely
reduces the gap with respect to our proposal, but both GOLD and
Mixture-GOLD show superior performance.

For completeness, Table 3 reports the results on Caltech-101 of
several recent approaches that are quite comparable to our
method. All of these use the same standard setting (15/30 samples
for training, at most 50 for testing), and SIFT descriptors captured
with dense sampling.

In addition, we include the results of Chatfield et al. [2] and
Duchenne and Joulin [50] that rely on multiple features or test
on a different number of images. Finally, we report the latest
results obtained with deep convolutional neural networks present-
ed in Zeiler and Fergus [51] and He et al. [52], which clearly outper-
form every other traditional method, including ours.

The results reported for the Caltech-101 dataset were obtained
with LibSVM, a well known software package for batch SVMs solv-
ing. The adoption of a batch solver was appropriate because feature
data could entirely fit in memory, due to the limited size of the
dataset. In order to verify the applicability of on-line solvers, we
also trained the SVM classifiers using the SGD algorithm, starting
from the public implementation provided by Leon Bottou.3 In
Table 4 the Mean Recognition Rate over the five runs at different
number of training epochs is reported. Note that the results at the
3 http://leon.bottou.org/projects/sgd.

http://www.vlfeat.org/applications/caltech-101-code.html
http://leon.bottou.org/projects/sgd
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Fig. 5. Cross validation results for choosing the parameter k on the ImageCLEF 2011
dataset.
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Table 4
Mean Recognition Rate per class for five runs on Caltech-101 using SGD algorithm.

Epochs Run 1 Run 2 Run 3 Run 4 Run 5 Average

1 1.59 1.71 1.81 1.36 1.36 1.57
2 35.90 36.89 35.31 33.46 38.39 35.99
8 66.14 60.79 64.17 61.95 65.56 63.72
16 73.95 74.14 72.64 72.14 73.17 73.21
128 79.31 81.11 78.95 79.47 80.36 79.84
512 80.35 81.84 79.65 80.34 81.26 80.69
2048 80.56 82.30 79.70 80.50 81.27 80.87
4096 80.59 82.32 79.75 80.52 81.27 80.89
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first epoch are very low for all runs, but they rapidly increase after
few epochs. After 2048 epochs the SGD algorithm achieves good
results, but only at 4096 epochs the SGD achieves the MRR score
obtained with LibSVM (with a gap of only 0.03%), proving the effica-
cy of the on-line solver.

Lastly, in this section we report the results obtained on
Caltech-256, as shown in Table 5. Since this dataset is larger than
Caltech-101, for this experiment we employed the SGD solver
and similar to Caltech-101 we fix the epochs equal to 4096. Also
on this more challenging dataset, our method shows very
competitive performance with respect to several SIFT-based tech-
niques. Note also that the proposed approach obtains significantly
better result than more complex techniques such as [50,53]. As
observed for Caltech-101, the deep convolutional neural network
approach [51] has a significant advantage over all reported
methods.

In both Caltech-101 and Caltech-256, the improvement in per-
formance given by the Mixture-GOLD over the GOLD is only of
some decimal points. We think that this behavior can be partially
explained analyzing the characteristics of the datasets: as firstly
demonstrated by [6], in these datasets the spatial pyramid is really
effective, due to the homogeneous location and size of the objects.
A good description of the spatial regions is therefore crucial to
obtain a high recognition rate. The smaller the region, the stronger
is the assumption (on which GOLD is based) that local descriptors
follow a (single) Gaussian distribution, reducing the advantage of
the GMM model used in Mixture-GOLD.

6.2. ImageCLEF 2011

ImageCLEF 2011 Annotation Task dataset is composed of a
training set of 8000 images and a test set of 10,000 images. The
ImageCLEF 2011 photo corpus is a challenging concept detection
dataset (multiple labels per image) due to its high heterogeneity
of classes (see samples in Fig. 1). There are 99 concepts, which
are concrete objects such as ‘‘church’’ or ‘‘trees’’ as well as more
abstractly defined classes like ‘‘funny’’ or ‘‘unpleasant’’.

On this dataset we extract RGBSIFT descriptors [10] at four
scales (4, 6, 8, and 10 pixels respectively) over a dense regular grid
Table 5
Comparison with the-state-of-the-art for Caltech-256.

30 Training 60 Training

GOLD 43.89 49.41
Mixture-GOLD 44.21 50.11
Bo et al. [42] 30.50 37.60
Yang et al. [49] 34.00 40.10
van Gemert et al. [54] – 27.20
Perronnin et al. [17] 40.80 47.90
Tuytelaars et al. [48] 37.00 –
Wang et al. [13] 41.19 47.68
Duchenne et al. [50] 38.10 –
Cao et al. [53] 38.74 45.43
Zeiler et al. [51] 70.60 74.20
with a spacing of 3 pixels and, even in this case, we use the
function vl_phow. As spatial pyramids we use 1� 1; 2� 2 and
3� 1. The Mean Average Precision (MAP) is used to evaluate the
performance.

With larger datasets such as ImageCLEF 2011, an on-line learn-
ing approach (in our case SGD) becomes the only possible choice
on common PCs. Only loading the entire training set in memory
(8000 samples) occupies about 6 GB, requiring to split the data in
chunks.

To select an appropriate regularization parameter k for the SGD
solver, we randomly split the training set in two and run the SGD
varying k from 10�3 to 10�7 in power of 10 steps. Based on this pre-
liminary experiments we fix k ¼ 10�5 (see Fig. 5). Furthermore
Fig. 6 reports the results in term of Mean Average Precision
(MAP) at different number of training epochs. Note that the perfor-
mance increases until the 64th epoch obtaining a MAP of 36.2, but
thereafter the MAP tends to slightly decrease, probably due to an
over-fitting of the SVM on the training data. The experiments show
that is very difficult to predict the exact number of epochs neces-
sary to reach the best results, and that even if there is a relation
with the number of training samples and the size of the feature
vectors, it is not a simple one. We found that the best practice is
0.299
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Table 7
Evaluation of our method with different local descriptors on ImageCLEF 2013.

Descriptor Baseline GOLD Mixture-GOLD

SIFT 28.32 36.02 38.43
RGBSIFT 29.50 38.53 40.12
OPPONENTSIFT 30.31 37.84 39.72
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to run a k-fold cross-validation on the training set, which closely
follow the final trend on the testing set.

Lastly we report in Table 6 a comparison with several tech-
niques: in the upper part of the table we directly compare our
approach with Bag of Words approaches (with linear and non-lin-
ear kernels) and very successful methods that publicly share their
code [33,13]. All of these methods use the same experimental set-
tings (same local features, same spatial pyramid and same SGD
classifier). For the Bag of Words approaches we use 4000 visual
words since we observed that the performance tends to saturate
at this codebook size, while, for the other techniques, we use the
values suggested by the authors. In the table we also include the
best run of the ImageCLEF workshop that obtained a MAP of 38.8
[55]. However these authors used three different color SIFT varia-
tions, different sampling strategies and improvements, and a Mul-
tiple Kernel Learning approach. Moverover, their computations
required a cluster with 11,000 Core Units which had (according
to cpubenchmark.net) a speed rank of 134 in August 2011. Our
tests were performed on a 12 cores machine, which clearly limits
the affordable computational effort. A more comparable approach,
from a computational requirements point of view, was followed in
[56], which used 7 color SIFT variations with both Harris and Dense
sampling, leading to 14 separate classifiers per concept, combined
with late fusion (averaging). They obtained a MAP of 31.1, clearly
showing that the summarization properties of the GOLD and
Mixture-GOLD representations, computed with only the basic
RGBSIFT, are able to beat the description of the BoW approach.
6.3. ImageCLEF 2013

ImageCLEF 2013 Scalable Concept Image Annotation dataset is
composed by 250,000 training images, obtained by querying pop-
ular image search engines (namely Google, Bing and Yahoo) when
searching for words in the English dictionary. It includes various
precomputed visual feature descriptors, extracted using the
ColorDescriptor software [10], and textual features extracted from
the websites in which the images appeared. It also provides a
development and test sets of 1000 and 2000 images, respectively,
both manually annotated for 95 and 116 concepts [57]. The compe-
tition objective is to develop systems that can easily change or
scale the list of concepts used for image annotation.

Two possible strategies have been identified: (i) finding images
similar to the query, and from those extract the image concepts,
leveraging the provided textual annotation; (ii) directly using the
textual annotation to roughly annotate the training set and then
for every concept building a classifier applicable to the query. In
the competition it has been shown that the second strategy largely
outperforms the first one.

We tested this dataset for several reasons: it consists of a very
large number of images; it is an unconstrained and challenging
dataset, because it has a high heterogeneity of classes (mixed pro-
fessional and user-generated content) and training images are not
manually annotated.
Table 6
Comparison with the-state-of-the-art for ImageCLEF 2011.

MAP

GOLD 36.20
Mixture-GOLD 37.65
BOW 25.06
BOW + Hellinger Kernel 33.87
Homogeneous Kernel Map [33] 34.72
Fisher vectors 35.69
LLC [13] 34.12
Spyromitros-Xioufis et al. [56] 31.10
Binder et al. [55] 38.80
In this experiment, following the second strategy, we compare
our approach with SVM classifiers learned by the provided
precomputed BoW [57]. Since the organizers computed the BoW
features using a spatial pyramid of 1� 1 and 2� 2, we also used
the same setting. In order to perform a fair comparison, all the
techniques use the same textual annotation to select the image
training set. Table 7 reports the performance in terms of MAP on
the development set using three different local descriptors: SIFT,
RGBSIFT and OPPONENTSIFT. It can be noted that our approach
obtains superior MAP values with all of the three features.

In our best run at the ImageCLEF 2013 workshop [58], images
are described using the GOLD descriptor computed on standard
SIFT and on three different color SIFT variations, combined with a
late fusion averaging approach. In this run, textual analysis on
the web pages containing training images is also performed, to
retrieve a relevant set of samples for learning each concept classi-
fier based on WordNet lexical database. This run obtained the best
result of the ImageCLEF 2013 workshop in terms of MAP: 45.6 (for
more detailed results see [57]4). Also in this dataset, the Mixture-
GOLD is able to further improve the performance of the GOLD
descriptor, of about 1.5 MAP points.
6.4. PASCAL VOC07

The PASCAL VOC07 dataset is a challenging archive for image
classification with 9963 image divided in 20 classes of objects.
Images are taken from Flickr and have large variations in size, illu-
mination, scale, and viewpoint. Classification accuracy is measured
using Mean Average Precision (MAP) over the 20 classes following
the common experimental protocol [2]. In this experiment we use
the VLFeat library [40] that includes multiple encoding methods
such as BOW, LLC, Super Vectors and Fisher Vectors. All the tested
methods use densely extracted multi-scale SIFT descriptors, and
images are partitioned with a 3 level pyramid: 1� 1; 2� 2 and
3� 1. Following [2], for BOW and LLC the codebook size is set to
25,000, for Super Vectors it is set to 1024, while Fisher vectors uses
a GMM with K ¼ 256 components, after reducing the dimension-
ality of the SIFT descriptor to 80 by using PCA. Similarly, for the
Mixture-GOLD (M-GOLD) we used a GMM with K ¼ 16 components
and again a 80-dimensional PCA-SIFT.

Table 8 shows the performance of our method with respect to
the other approaches. Although this dataset is very challenging,
without specializing the GOLD image descriptor we are able to
reach the performance of the BOW technique, which on the con-
trary requires to learn a very large and specific codebook. In order
to achieve state of the art results, obtained by the Fisher Vector
technique, introducing dataset dependency with GMM modeling
is required. Moving from the GOLD to the Mixture-GOLD improves
the performance of 6 MAP points getting results comparable with
Fisher Vectors.

Therefore, our solution enables the user to choose between a
descriptor which is effectively reusable when the image collection
dynamically evolves, and one that provides better performance,
thanks to the specific dataset characteristics.
4 http://imageclef.org/2013/photo/annotation/results.
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Table 8
Comparison with the-state-of-the-art for PASCAL VOC07.

Class GOLD M-GOLD BOW LLC [13] SV [59] FV [17]

Aeroplane 76.45 77.58 67.29 71.35 74.32 78.97
Bicycle 58.26 65.57 55.22 62.65 63.79 67.43
Bird 41.14 51.75 36.58 46.12 47.02 51.94
Boat 70.51 76.39 64.42 68.98 69.44 70.92
Bottle 21.95 29.32 21.89 26.04 29.06 30.79
Bus 63.86 69.71 56.31 63.92 66.46 72.18
Car 75.02 78.16 72.90 76.98 77.31 79.97
Cat 61.02 63.12 52.11 59.71 60.18 61.35
Chair 52.09 54.12 51.51 53.96 50.19 55.98
Cow 36.96 47.70 38.23 46.34 46.46 49.61
Diningtable 48.51 58.35 46.50 52.10 51.86 58.40
Dog 36.33 46.27 34.99 42.39 44.07 44.77
Horse 78.01 79.98 74.62 77.17 77.85 78.84
Motorbike 65.19 69.63 60.71 67.15 67.12 70.81
Person 82.81 81.64 80.05 83.36 83.07 84.96
Pottedplant 19.75 30.28 18.79 23.11 27.56 31.72
Sheep 38.27 46.76 37.13 44.45 48.50 51.00
Sofa 47.75 59.41 50.22 52.12 51.10 56.41
Train 75.46 79.01 71.71 75.36 75.50 80.24
Tvmonitor 50.84 56.53 48.32 52.21 52.26 57.46
Mean 55.01 61.06 51.97 57.27 58.16 61.69
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7. Conclusions

In this paper we presented a new way to summarize local
descriptors by means of multivariate Gaussian distributions. While
still providing the possibility to include all the techniques which
improve system performance, such as spatial pyramids and power
normalization, this allows to obtain an image descriptor totally
independent on the dataset. The experimental results show that
the method achieves performance which are very competitive with
state-of-the art approaches on several well-known datasets. This
solution could be also employed in many different situations in
which the dataset changes dynamically (for example in online ser-
vices such as Flickr or Google Images), still allowing to use the same
feature vectors in different scenarios. Furthermore an extension to a
mixture of Gaussians is proposed, enhancing the image description
considering context information. Its discriminative capability
allows to boost classification results in specific scenarios.
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