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Gesture Recognition Using Wearable Vision Sensors
to Enhance Visitors’ Museum Experiences

Lorenzo Baraldi, Francesco Paci, Giuseppe Serra, Luca Benini, Fellow, IEEE, and Rita Cucchiara, Member, IEEE

Abstract— We introduce a novel approach to cultural heritage
experience: by means of ego-vision embedded devices we develop
a system, which offers a more natural and entertaining way
of accessing museum knowledge. Our method is based on
distributed self-gesture and artwork recognition, and does not
need fixed cameras nor radio-frequency identifications sensors.
We propose the use of dense trajectories sampled around the
hand region to perform self-gesture recognition, understand-
ing the way a user naturally interacts with an artwork, and
demonstrate that our approach can benefit from distributed
training. We test our algorithms on publicly available data sets
and we extend our experiments to both virtual and real museum
scenarios, where our method shows robustness when challenged
with real-world data. Furthermore, we run an extensive
performance analysis on our ARM-based wearable device.

Index Terms— Wearable vision, interactive museum, embedded
systems, gesture recognition, natural interfaces.

I. INTRODUCTION

N RECENT years the interest in cultural heritage has

reborn, and the cultural market is becoming a cornerstone
in many national economic strategies. In the United States, a
recent report of the Office of Travel and Tourism Industries
claims that 51% of the 40 million Americans traveling abroad
visit historical places; almost one third visit cultural heritage
sites; and one quarter go to an art gallery or museum [1].
The same interest is found in Europe, where the importance
of the cultural sector is widely acknowledged, South Asia and
North Africa. The latest annual research from World Travel
and Tourism Council shows that travel and tourism’s total
contribution to total GDP grew by 3.0% in 2013, faster than
overall economic growth for the third consecutive year [2].
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Fig. 1. Natural interaction with artworks: visitors can get specific content or
share information about the observed artwork through simple gestures. Hand
segmentation results are highlighted in red and detected gestures are reported
in the bottom part of each frame.

Consequently, to deal with an increasing percentage of
“digital native” tourists, a big effort is underway to pro-
pose new interfaces for interacting with the cultural heritage.
In this direction goes the solution “SmartMuseum” proposed
by Kuusik er al. [3]: by the means of PDAs and RFIDs,
a visitor can gather information about what the museum
displays, building a customized visit based on his or her
interests inserted, prior to the visit, on their website. This
project brought an interesting novelty when first released,
but it has some limitations. First, being tied to RFIDs does
not allow reconfiguring the museum without rethinking the
entire structure of the exhibition. Furthermore, researches
demonstrated how the use of mobile devices on the long term
decreases the quality of the visit due to their users paying
more attention to the tool rather than to the work of art itself.

In 2007 Kuflik er al. [4] proposed a system to customize
visitors experiences in museums using software capable of
learning their interests based on the answers to a questionnaire
that they compiled before the visit. Similarly to SmartMuseum,
one of the main shortcomings of this system is the need
to stop the visitor and force him into doing something that
he/she might not be willing to do. An interesting attempt
to user profiling with wearable sensors was the Museum
Wearable [5], a wearable computer which orchestrates an
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audiovisual narration as a function of the visitors’ interests
gathered from his/her physical path in the museum. However
this prototype does not use any computer vision algorithm for
understanding the surrounding environment. For instance the
estimation of the visitor location is based again on infrared
sensors distributed in the museum space.

Museums and cultural sites still lack of an instrument that
provides entertainment, instructions and visit customization in
an effective natural way. Too often visitors struggle to find
the description of the artwork they are looking at and when
they finds it, its detail level could be too high or too low
for their interests. Moreover, frequently the organization of
the exhibition does not reflect the visitors’ interests leading
them to a pre-ordered path which cultural depth could not be
appropriate.

To overcome these limitations, we present a solution to
enhance visitors’ experiences based on a new emerging
technology, namely ego-vision [6]. Ego-vision features glass-
mounted wearable cameras able to see what the visitor sees
and perceiving the surrounding environment as he does.
We developed a wearable vision device for museum envi-
ronments, able to replace the traditional self-service guides
and overcoming their limitations and allowing for a more
interactive museum experience to all visitors. The aim of our
device is to stimulate the visitors to interact with the artwork,
reinforcing their real experience, by letting visitors to replicate
the gestures (e.g. point out to the part of the painting they’re
interested in) and behaviors that they would use to ask a guide
something about the artwork.

In this work, we provide algorithms that perform gesture
analysis to recognize user interaction with artworks and
artwork recognition to achieve context awareness (see Fig. 1)
The proposed solution is based on scalable and distributed
wearable devices capable of communicating with each other
and with a central server and hence does not require fixed
cameras. In particular the connection with the central server
allows our wearable devices to grab gestures of past visitors
for improving gesture analysis accuracy, to get information and
specific content of the observed artwork through the automatic
recognition module, and to share visitor’s feelings and photos
on social networks.

The main novelties and contributions of this paper are:

o« A distributed architecture that improves museum
visitors’ experience. It is composed by ego-vision
wearable devices and a central server, and it is capable
of recognizing users’ gestures and artworks.

« A gesture recognition approach specifically developed for
the ego-vision perspective. Unlike standard gesture recog-
nition techniques, it takes into account camera motion
and background cluttering, and does not need markers
on hands. It shows superior performance when compared
on benchmark dataset, and can achieve good accuracy
results even with a few training samples. We further
demonstrate that it can benefit from distributed training in
which gestures performed by past visitors are exploited.

« A novel hand segmentation approach that considers
temporal and spatial consistency, and that is capable
of adapting itself to different illumination conditions.
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It achieves the state-of-the-art results in the ego-vision
EDSH dataset. Moreover, we show that when combined
with our gesture recognition approach, it can improve the
overall system accuracy.

« A performance evaluation of our algorithms on an
ARM big LITTLE heterogeneous platform for embedded
devices and an implemented tradeoff between accuracy
and performance.

The rest of this article is structured as follows: in the next
section we report related works for ego-vision. In Section III
we give a detailed description of our system, focusing on self
gesture recognition and artwork recognition. In Section IV
our algorithms are compared with the state of the art and we
present two novel datasets taken in real and virtual museum
environments.

II. RELATED WORK

Only recently the ego-vision scenario has been addressed
by the research community. The main effort has focused on
understanding human activities and detecting hand regions.
Pirsiavash and Ramanan [7] detected activities of daily liv-
ing using temporal pyramids and object detectors tuned for
objects appearance during interactions and spatial reasoning.
Sundaram and Cuevas [8] proposed instead to use Dynamic
Bayesian Networks to recognize activities from low resolution
videos, without performing hand detection and preferring
computational inexpensive methods. Fathi ef al. [9] used a
bottom-up segmentation approach to extract hand held objects
and trained object-level classifier to recognize objects; further-
more they also proposed an activity detection algorithm based
on object state changes [10].

Regarding hand detection, Khan er al. in [11] studied
color classification for skin segmentation. They pointed
out how color-based skin detection has many advantages
and potentially high processing speed, invariance against
rotation, partial occlusion and pose change. The authors
tested Bayesian Networks, Multilayers Perceptrons, AdaBoost,
Naive Bayes, RBF Networks and Random Forest. They
demonstrated that Random Forest classification obtains the
highest F-score among all the other techniques. Fathi et al. [9]
proposed another approach to hand detection, based on the
assumption that background is static in the world coordinate
frame, thus foreground objects are detected as the moving
regions with respect to the background. An initial panorama
of the background is required to discriminate between back-
ground and foreground regions: this is achieved by fitting
a fundamental matrix to dense optical flow vectors. This
approach is shown to be a robust tool for skin detection and
hand segmentation in limited indoor environments, even if it
performs poorly with more unconstrained scenarios.

Li and Kitani [12] provide a historical overview of
approaches for detecting hands from moving cameras. They
define three categories: local appearance-based detection,
global appearance-based detection, where a global template
of hand is needed, and motion-based detection, which is
based on the hypothesis that hands and background have
different motion statistics. Motion-based detection approaches
require no supervision nor training. On the other hand,
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to retrieve gestures from other users and painting templates for artwork recognition. The central server contains two databases: the gesture database, which
includes gestures performed by past visitors, and the artwork database, which contains artwork templates.

these approaches may identify as hand an object manipulated
by the user, since it moves together with his hands. In addition
they proposed a method with sparse feature selection which
was shown to be an illumination-dependent strategy. To solve
this issue, they trained a set of Random Forests indexed
by a global color histogram, each one reflecting a different
illumination condition.

Several approaches to gesture and human action recog-
nition have been proposed. Sanin er al. [13] developed a
new and more effective spatio-temporal covariance descriptor
to classify gestures in conjunction with a boost classifier.
Lui et al. [14], Lui and Beveridge [15] used tensors and
tangent bundle on Grassmann manifolds to classify human
actions and hand gestures. Kim and Cipolla [16] extended
Canonical Correlation Analysis to measure video-to-video
similarity to represent and detect actions in video. However,
all these approaches are not appropriate for the ego-centric
perspective, as they do not take into account any of the
specific characteristics of this domain, such as fast camera
motion and background cluttering. To our knowledge, the
study of gesture recognition in the ego-centric paradigm has
been partially addressed by Mistry and Maes [17]. Their
work presents a natural interface to interact with the physical
world and embeds a projector to show results of that interac-
tion. However they use colored markers on user’s fingers to
recognize gestures and they require a backpacked laptop as
computational unit. Although our work could seem similar to
this last approach, we move a step forward with respect to [17]:
we proposed a fully automatic gesture recognition approach
based on appearance and motion of the hands. Our approach
can deal with background cluttering and camera motion and
does not require any markers on fingers. In addition we provide
an embedded solution that the user can easily wear.

III. PROPOSED ARCHITECTURE

Our cultural heritage system consists of a central server
and a collection of wearable ego-vision devices, that embed
a glass-mounted camera and an Odroid-XU developer board,

serving as video-processing and network communication unit
(see Fig. 3). There are several benefits in using such a
portable device: the commercial availability and low costs for
prototypes evaluation, the computational power and energy
efficiency of the big.LITTLE architecture, the possibility of
peripheral addition to extend connections and input devices. In
particular, the developer board [18] we use embeds the ARM
Exynos 5 SoC, that hosts a Quad big. LITTLE ARM processor
(Cortex A15 and A7) [19]. To make it a portable demo device
a battery pack of 3000 mAh has been added (see Figure 4).

This wearable device hosts the two main components of our
system. The first one is the software that makes it capable
of recognizing the gestures performed by its user and can
customize itself, learning the way its user reach out for
information. Adapting to personal requests is a key aspect
in this process, in fact people in different cultures have very
different ways of express through gestures. Our method is
robust to lighting changes or ego-motion and can learn from a
very limited set of examples gathered during a fast setup phase
involving the user. The second component of our architecture
is the artwork recognition, which allows not only to understand
what the user is observing but also to infer the user’s position.

The cooperation of ego-vision devices with the central
server is two-fold. First, to increase gesture recognition accu-
racy, wearable devices receive gesture examples performed
by past visitors and then send gestures for future users to
augment the training set; second, the server also features a
database of all the artworks in the museum, which is used for
painting recognition and for obtaining detailed text, audio and
video content. A schema of the proposed system is presented
in Figure 2.

A. Gesture Recognition

Gestures can be characterized by both static and dynamic
hand movements. Therefore, we consider a video sequence
captured by a glass mounted camera, in which a gesture
may be performed, and describe it as a collection of dense
trajectories extracted around hand regions. When the user’s
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Fig. 3. One user interacting with wearable camera.

Fig. 4. The Odroid-XU board with battery pack.

hands appear, feature points are sampled inside and around the
hands and tracked during the gesture; then several descriptors
are computed inside a spatio-temporal volume aligned with
each trajectory to capture its shape, appearance and movement
at each frame. We use the following descriptors, according
to [20]: Trajectory descriptor, histograms of oriented gradi-
ents (HOG), of optical flow (HOF), and motion boundary
histograms (MBH). The first one directly captures trajectory
shape, while HOG [21] are based on the orientation of image
gradient and thus encode the static appearance of the region
surrounding the trajectory. HOF and MBH [22] are based
on optical flow and are used to capture motion information
enforcing the temporal aspect of our method. These descriptors
are coded, using the Bag of Words approach and power
normalization, to obtain the final feature vectors, which are
then classified using a linear SVM classifier. Figure 5 provides
a more detailed outline of the workflow of the proposed
gesture analysis module.

1) Camera Motion Removal: To estimate the hand motion,
it is first necessary to remove the camera motion, which
is, semantically, noise. To do so, the homography transform
between two consecutive frames is estimated running the
RANSAC [23] algorithm on densely sampled features points:
SURF [24] features and sample motion vector are extracted
from the Farneback’s optical flow [25] to get dense matches
between frames. The choice of this particular optical flow algo-
rithm is induced by our preliminary tests, in which Farneback’s
optical flow showed the best performance when compared to
other popular optical flow algorithms, such as TV-L1 [26] and
SimpleFlow [27].

In ego-vision, however, it is often the case where camera and
hand motions are not consistent, resulting in wrong matches
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between the frames and degrading the consequent homography
estimation. This introduces the need for an additional step
based on a totally decoupled feature. We use a hand segmen-
tation mask that allows us to remove the matches belonging
to the user’s hands, which could have resulted in incorrect
trajectories. Computing the homography based only on non-
hand keypoints allows to have a motion model consistent with
the ego-motion of the camera which can, consequently, be
removed.

2) Gesture Description: After the suppression of camera
motion, trajectories can be extracted. Using the previously
estimated homography, each frame of the sequence is warped
and the Farneback’s optical flow between each couple of
adjacent frames is recomputed to estimate the motion resulting
from the hand movement. Feature points around the hand
region are sampled and tracked in a way similar to [20].
We build a spatial pyramid with four layers, such that each
layer has half the area of the previous one, and at each spatial
scale we apply a threshold on the minimal eigenvalue of
the covariance matrix of image derivatives to obtain dense
keypoints. We also ensure that keypoints are not duplicated
among different spatial layers, and that a minimum distance
between each couple of points is preserved. Each keypoint
P; = (x;, y;) is then tracked by the means of median filtering
with kernel M in a dense optical flow field w = (uy, vy):

Pyt = (X1, Yia1) = (i, 1) + (M % 0)|(z,,5) )]

where (X, y;) is the rounded position of P;. Differently
from [20], our trajectories are calculated under the constraint
that they lie inside and around the user’s hand: at each frame
the hand mask is dilated and all keypoints still outside are
discarded.

A spatio-temporal volume aligned with each trajectory is
then build, as a collection of 32 x 32 patches around the
keypoint. Then, Trajectory descriptor, HOG, HOF and MBH
are computed inside the volume. We introduce a difference
in how to weight the temporal volume of each component
of our feature vector: while HOF and MBH are averaged on
five consecutive frames, a single HOG descriptor is computed
for each frame. This allows us to describe the changes in the
hand pose at a finer temporal granularity. This step results
in a variable number of descriptors for each video sequence.
To obtain a fixed size descriptor, we exploit the Bag of
Words approach training four separate codebooks, one for each
descriptor. Each codebook contains K visual words (in the
experiments we fix K = 500) and is obtained running the
k-means algorithm on the training data.

Since the histograms obtained from the Bag of Words in
our domain tend to be sparse, they are power normalized
to unsparsify the representation, while still allowing for
linear classification. To perform power-normalization [28], the
function:

. 1
f(hi) = sign(h;) - |hi|2 (2
is applied to each bin A; in our histograms.
The final descriptor is then obtained by the concatenation

of its four power-normalized histograms. Finally, gestures are
recognized using a linear SVM 1-vs-1 classifier.
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Fig. 5. An outline of the proposed gesture recognition module. It is roughly composed by three steps: the first step consists of hand segmentation and feature
extraction, the second step performs BoW coding, the third step is the classification enhanced by past visitors’ gestures.

B. Hand Segmentation

As stated before, a hand segmentation mask is used to
distinguish between camera and hand motions, and to prune
away all the trajectories that do not belong to the user’s hand.
In this way, our descriptor captures hands movement and shape
as if the camera was fixed, and disregards the noise coming
from other moving regions that could be in the scene.

At each frame we extract superpixels using the
SLIC algorithm [29], that performs a k-means-based
local clustering of pixels in a 5-dimensional space, where
color and pixel coordinates are used. Superpixels are then
represented with several features: histograms in the HSV and
LAB color spaces (that have been proven to be good features
for skin representation [11]), Gabor filters and a simple
histogram of gradients, to discriminate between objects with
a similar color distribution.

1) Hllumination Invariance: To deal with different illumi-
nation conditions, we cluster the training images running the
k-means algorithm on a global HSV histogram. Hence, we
train a Random Forest classifier for each cluster. By using
a histogram over all three channels of the HSV color space,
each scene cluster encodes both the appearance of the scene
and its illumination. Intuitively, this models the fact that hands
viewed under similar global appearance will share a similar
distribution in the feature space. Given a feature vector 1 of a
superpixel s and a global appearance feature g, the posterior
distribution of s is computed by marginalizing over different
clusters c:

k
P(sll,g) = > P(sll.c)P(clg)

c=1

3)

where k is the number of clusters, P(s|l,c) is the output
of the cluster-specific classifier and P(c|g) is a conditional
distribution of a cluster ¢ given a global appearance feature g.
In test phase, the conditional P(c|g) is approximated using an
uniform distribution over the five nearest clusters. It is impor-
tant to highlight that the optimal number of classifiers depends
on the characteristics of the dataset: a training dataset with

several different illumination conditions, taken both inside and
outside, will need an higher number of classifiers than one
taken indoor. In addition, we model the hand appearance not
only considering illumination variations, but also including
semantic coherence in time and space.

2) Temporal Coherence: To improve the foreground
prediction of a pixel in a frame, we replace it with a weighted
combination of its previous frames, since past frames should
affect the prediction for the current frame.

We define a smoothing filter for a pixel x,i from frame ¢ as:

min(z,d)
Pei=1)= > w(P(i=1x_,=1)
k=0
P(x_= 1k, &)+ P(x; = 1lx,_,=0)

“P(x' = O0ll—, g—x)) )

where d is the number of past frames used, and
P(xti_k = 1|l;—, g—x) is the probability that a pixel in
frame ¢ — k is marked as hand part, equal to P(s|l;—k, g ),
being xf part of s. In the same way, P(xt’;k =O0|li—k, 8—k) i
defined as 1 — P(s|l,—x, g/—x). Last, P(xf = l|xt’;k =1) and
P(x = l|xt’;k = () are prior probabilities estimated from the
training set as follows:

. . (xf = Lx_,=1)
Pof = s, = = TR
t—k —
. . #(xl =1,x'_, =0)
Pl =11x_, =0) = t#(xf t—ko) 5)
t—k —

where #(xt’;k =1) and #(xt’;k = 0) are the number of times
in which xt’;k belongs or not to a hand region, respectively;
#(x,i =1, xt’;k = 1) is the number of times that two pixels at
the same location in frame ¢ and ¢ — k belong to a hand part;
similarly #(x/ = 1,x/_, = 0) is the number of times that a
pixel in frame ¢ belongs to a hand part and the pixel in the
same position in frame # —k does not belong to a hand region.
Based on our preliminary experiments we set d equal to three.
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3) Spatial Consistency: Given pixels elaborated by the
previous steps, we want to exploit spatial consistency to prune
away small and isolated pixel groups that are unlikely to be
part of hand regions and also aggregate bigger connected pixel
groups. For every pixel x, we extract its posterior probability
P(x]) and use it as input for the GrabCut algorithm [30]. Each
pixel with P(x!) > 0.5 is marked as foreground, otherwise it’s
considered as part of background. After the segmentation step,
we discard all the small isolated regions that have an area of
less than 5% of the frame and we keep only the three largest
connected components.

C. Artwork Recognition

The second component of our system is artwork recognition:
a matching is established between the framed artwork and
its counterpart on the system database. The real-world
ego-vision setting we are dealing with makes this task full
of challenges: paintings in a museum are often protected by
reflective glasses or occluded by other visitors and even by
user’s hands, requiring a method capable of dealing with these
difficulties too.

For this reason, we follow common approaches of
object recognition based on interest points and local
descriptors [31], [32], that have been proved to be able to cap-
ture sufficiently discriminative local elements and are robust
to large occlusions.

First of all, SIFT keypoints are extracted from the whole
image. The need to proceed with this approach instead of
sampling from a detected area derives from the difficulties
that arise when trying to detect paintings from a first person
perspective. Detection based on shape resulted in high false
positive rate, hence we rely on sampling over the whole
image. To improve the match quality, we process the matched
keypoints using the RANSAC algorithm. The ratio between
the remaining matches and the total number of keypoints is
then thresholded, allowing to recognize if the two images refer
to the same artwork even in presence of partial occlusions.
In addition, to avoid occlusions with user’s hands we per-
form artwork recognition on the frames captured before the
recognized gesture using a temporary buffer.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of our gesture recognition
and hand segmentation algorithms we first compare them
with existing approaches. In particular we test our gesture
module on the Cambridge-Gesture database [33], which
includes nine hand gesture types performed on a table, under
different illumination conditions. Whereas to evaluate the hand
segmentation approach, we test it on the publicly available
CMU EDSH dataset [12] which consists of three ego-centric
videos with indoor and outdoor scenes and large variations of
illuminations.

Furthermore, to investigate the effectiveness of the proposed
approach in videos taken from the ego-centric perspective and
in a museum setting, we also propose and release publicly
two realistic and challenging datasets recorded in in an inter-
active exhibition room, which functions as a virtual museum,
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Fig. 6.

Sample images from the Cambridge hand gesture dataset.

TABLE I
RECOGNITION RATES ON THE CAMBRIDGE DATASET

Method Setl Set2  Set3 Setd  Overall
TCCA [16] 0.81 0.81 0.78  0.86 0.82
PM [14] 089 086 0.89 087 0.88
TB [15] 093 088 090 091 0.91
Cov3D [13] 092 094 094 093 0.93
Our method 092 093 097 095 0.94

and a real museum of Modern Art. Finally, we perform a
performance evaluation of the proposed algorithms on one of
our wearable devices.

A. Cambridge Hand Gesture Dataset

The Cambridge Hand Gesture dataset contains
900 sequences of nine hand gesture classes. Although
this dataset does not contain ego-vision videos it is useful
to compare our results with recent gesture recognition
techniques. In particular, each sequence is recorded with
a fixed camera, placed over one hand, and hands perform
leftward and rightward movements on a table, with different
poses (see Figure 6). The whole dataset is divided in five
sets, each of them containing image sequences taken under
different illumination conditions. The common test protocol,
proposed in [33], requires to use the set with normal
illumination for training and the remaining sets for testing,
thus we use the sequences taken in normal illumination to
generate the BoW codebooks and to train the SVM classifier.
Then, we perform the test using the remaining sequences.

Table I shows the recognition rates obtained with our
gesture recognition approach, compared with the ones of
tensor canonical correlation analysis (TCCA) [16], product
manifolds (PM) [14], tangent bundles (TB) [15] and spatio-
temporal covariance descriptors (Cov3D) [13]. Results show
that the proposed method is effective in recognizing hand
gestures, and that it outperforms the existing state-of-the-art
approaches.

B. EDSH Hand Segmentation Dataset

The CMU EDSH dataset consists of three ego-centric videos
(EDSHI1, EDSH2, EDSHK) containing indoor and outdoor
scenes where hands are purposefully extended outwards to
capture the change in skin color. As this dataset does not
contain any gesture annotation, we use it to evaluate only the
hand segmentation part.

We validate the techniques that we have proposed for
temporal and spatial consistency. In Table II we compare
the performance of the hand segmentation algorithm in terms
of Fl-measure, firstly using a single Random Forest classi-
fier, and then incrementally adding illumination invariance,
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TABLE II
PERFORMANCE COMPARISON CONSIDERING ILLUMINATION
INVARIANCE (II), TEMPORAL COHERENCE (TC)
AND SPATIAL CONSISTENCY (SC)

Features EDSH2 EDSHK

Single RF classifier 0.761 0.829

11 0.789 0.831

I + TC 0.791 0.834

II + TC + SC 0.852 0.901

TABLE III
HAND SEGMENTATION COMPARISON WITH THE STATE-OF-THE-ART

Method EDSH2 EDSHK
Hayman and Eklundh [34] 0.211 0.213
Jones and Rehg [35] 0.708 0.787
Li and Kitani [12] 0.835 0.840
Our method 0.852 0.901

the temporal smoothing filter and the spatial consistency
technique via the GrabCut algorithm application. Results
shows that there is a significant improvement in performance
when all three techniques are used together: illumination
invariance increases the performance with respect to the
results obtained using only a single Random Forest classifier,
while temporal smoothing and spatial consistency correct
incongruities between adjacent frames, prune away small and
isolated pixel groups and merge spatially nearby regions,
increasing the overall performance.

Then, in Table III we compare our segmentation method
with different techniques: a video stabilization approach based
on background modeling [34], a single-pixel color method
inspired by [35] and the approach proposed in [12] by Li et al.,
based on a collection of Random Forest classifiers. As can be
seen, the single-pixel approach, which basically uses a random
regressor trained only using the single pixel LAB values, is
still quite effective, even if conceptually simple. Moreover, we
observe that the video stabilization approach performs poorly
on this dataset, probably because of the large ego-motions
these video present. The method proposed by Li ef al. is the
most similar to our approach, nevertheless exploiting temporal
and spatial coherence we are able to outperform their results.

C. Virtual and Real Museum Environments

We propose two new gesture recognition datasets taken
from the ego-centric perspective in virtual and real museum
environments. The Interactive Museum dataset consists of
700 video sequences, all shot with a wearable camera, taken
in a interactive exhibition room, in which paintings and
artworks are projected over a wall in a virtual museum fashion
(see Figure 7). The camera is placed on the user’s head and
captures a 800 x 450, 25 frames per second 24-bit RGB image
sequence. Five different users perform seven hand gestures:
like, dislike, point, ok, slide left to right, slide right to left and
take a picture. Some of them (like the point, ok, like and dislike
gestures) are statical, others (like the two slide gestures) are
dynamical. We have publicly released the dataset.!

1http://imagelab.ing.unimore.it/ﬁles/ego_virtualmuseum.zip
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Fig. 7.
(b) Point gesture. (c) Slide left to right gesture.

Gestures from the Interactive Museum dataset. (a) Dislike gesture.

TABLE IV
GESTURE RECOGNITION ACCURACY ON THE INTERACTIVE MUSEUM
DATASET WITH AND WITHOUT HAND SEGMENTATION

User No segmentation  With segmentation
User A 0.91 0.95
User B 0.96 0.94
User C 0.91 0.96
User D 0.87 0.87
User E 0.92 0.95
Average 0.91 0.93

Since ego-vision applications are highly interactive, their
setup step must be fast (i.e. few positive examples can be
acquired). Therefore, to evaluate the proposed gesture recog-
nition approach, we train a 1-vs-1 linear classifier for each
user using only two randomly chosen gestures per class as
training set.

In Table IV we show the gesture recognition accuracy for
each of the five subjects of the Interactive Museum dataset.
To validate the proposed technique, that combines gesture
recognition and hand segmentation, we also show the results
obtained without the use of the hand segmentation mask.
As can be seen, our approach is well suited to recognize
hand gestures in the ego-centric domain, even using only two
positive samples per gesture, and the use of the segmentation
mask for camera motion removal and trajectories pruning can
improve recognition accuracy. The reported results are the
average over 100 independent runs.

On a different note, to test our approach in a real setting, we
created a dataset with videos taken in the Maramotti modern
art museum, in which paintings, sculptures and objets d’art
are exposed. As in the previous dataset, the camera is placed
on the user’s head and captures a 800 x 450, 25 frames
per second image sequence. The Maramotti dataset contains
700 video sequences, recorded by five different persons (some
are the same of the Interactive Museum dataset), each perform-
ing the same gestures as before in front of different artworks.
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Fig. 8.
(d) Take a picture gesture.

TABLE V
GESTURE RECOGNITION ACCURACY ON THE MARAMOTTI DATASET

User Single user’s Gestures  Augmented
User A 0.54 0.65
User B 0.52 0.72
User C 0.68 0.68
User F 0.56 0.79
User G 0.53 0.72
Average 0.57 0.71

We are currently waiting for the permission to release this
dataset from the Maramotti museum.

Figures 7 and 8 show some examples of gestures performed
in the two datasets. In the Interactive Museum dataset, users
perform gestures in front of a wall over which the works of art
are projected. This setting is quite controlled: the illumination
is constant, the art works are in low light, while hands are well
illuminated. On the other hand, in the Maramotti dataset, users
perform gestures in front of real artworks inside a museum.
This is a realistic and very challenging environment: the
illumination changes, other visitors are present and sometimes
walk in. In both cases there is significant camera motion,
because the camera moves as the users move their heads or
arms. It is also important to underline that users have not been
trained before recording their gestures, so each user performs
the gestures in a slightly different way, as would happen in a
realistic context.

In Table V we show the results of our gesture recognition
approach on the Maramotti dataset. As can be seen, in this
case the challenging and real environment causes a drop in
accuracy. This is mainly due to the illumination changes,
to the presence of other visitors, and to the fact that often
the artworks are better illuminated than hands. Since our
wearable vision devices is fully connected to a central server,
we show how the use of other visitors’ gestures can improve
the recognition accuracy. In our scenario each visitor coming
to the museum performs, in the initial setup phase, two
training gestures for each class. These training gestures from
past visitors, manually checked, are used to augment the
training set, so no erroneous data is accumulated into the
model. In particular, in our test “Augmented” (Table V) each
ego-vision wearable device uses two randomly chosen gestures
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(d)

Gestures from the Maramotti dataset. (a) Like gesture. (b) Ok gesture, in low light. (c) Slide right to left gesture, while another visitor walks in.

performed by its user as training, plus gestures performed
by the remaining four users supplied by their devices to the
central server. Results show that this distributed approach is
effective and leads to a significant improvement in accuracy.

D. Performance Evaluation

In this section we present our gesture recognition
approach performance and optimizations. They are evaluated
on the Hardkernel Odroid-XU board, already introduced
in Section III. The tests we further present are performed on
the Maramotti dataset. To evaluate the performance of our
gesture recognition application, we split our algorithm in five
main sub-modules (already deeply explained in the previous
sections): Hand Segmentation, Camera motion removal,
Trajectory extraction, Trajectory description, Power-
normalized BoW and SVM-based Classification. To reach
good performance on the Odroid-XU embedded device we
applied different optimization techniques. Firstly compiler
optimization has been used to speed-up code execution
adding -O3 to compilation flags. Then we used Neon
optimized instructions, by including neon library in source
code and using these flags at compile time: -mfpu=neon-
vipv4 -mfloat-abi=hard -mtune=cortex-al5 -marm. Several
low level “for cycles” have been balanced on different
processors using OpenMP parallel regions. In Figure 9 we
show the impact of each sub-module, separately, to elaborate
38 frames, that is the average gesture length within the
Maramotti dataset. On the bottom part of each column we
report the number of times each sub-module is called.

As can be seen, the Hand Segmentation is by far the most
time consuming sub-module compared to the others. This is
also due to the number of times each of sub-module is called:
while Classification and Power-normalized BoW are executed
just one time per gesture, the others are called one time per
frame.

Therefore, we studied the performance-accuracy tradeoff
of hand segmentation introducing a frame step between sub-
sequent elaborations. The idea is to benefit of the hand
segmentation not on each frame, but to introduce a gap
between segmentation processing of the video stream and
see how this impact on the gesture recognition accuracy.
In this case, the hand segmentation mask is computed
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Average time consumption to elaborate a dataset
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Fig. 9. Average time consumption of each submodule to elaborate a gesture
sample from the Maramotti dataset.

Hand Segmentation Step Performance vs Accuracy
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Fig. 10. Performance-accuracy trade-off of the proposed gesture recognition
approach with different Hand Segmentation frame steps.

every s frames. Trajectories and descriptors are still computed
using all frames, but new keypoints are sampled only when
the hand segmentation mask is available. The choice of higher
values of s results in an increasing loss of accuracy, since the
gesture is described with less trajectories, but in a decreasing
computational power needed to process the input.

Figure 10 summarizes the whole gesture recognition
algorithm performance and accuracy, applying different hand
segmentation frame steps. We evaluated it as an average of the
five Maramotti subjects, and the execution step of the Hand
Segmentation is evaluated on the average length of the dataset
samples (38 frames).

Three lines are shown in the graph: accuracy, performance
and the normalized tradeoff. This last line has been computed
as plain multiplication of normalized accuracy by normalized
performance. The best normalized tradeoff is given by a step
size of 5 frames. The average hands segmentation accuracy
decreases of 9% (from 71.2% to 62.2%) in a tradeoff with a
speed-up of 5x. This is a good result for performance, because
paying a 9% accuracy loss we reduce the execution time from
3438.51 ms to 687.70 ms.

In Table VI we show a summary of the performances
obtained with different step sizes. As can be seen, the best
computational performance on Odroid-XU platform is reached
when using a step size of 10, and paying an accuracy
loss of about 19% (from 71.2% to 52.2%). Based on this
analysis, we can state that our gesture recognition with hand
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TABLE VI
GESTURE RECOGNITION PERFORMANCE WITH DIFFERENT STEP SIZES

Step size  ms per frame  Frame/second  Accuracy
s=1 3438.51 0.29 71,2 %
s=5 687.70 1.45 62,2 %
s =10 343.85 291 52,2 %

segmentation is sufficiently accurate for real-life deployment
and runs with an acceptable computation performance on
ARM-based embedded devices.

V. CONCLUSION

We described a novel approach to cultural heritage fruition
based on ego-centric vision devices. Our work is motivated by
the increasing interest in ego-centric vision and by the growth
of the cultural market, which encourages the development
of new interfaces to interact with the cultural heritage.
We presented a gesture and painting recognition model that
can deal with static and dynamic gestures and can benefit
from a distributed training. Our gesture recognition and hand
segmentation  results outperform the state-of-the-art
approaches on Cambridge Hand Gesture and CMU EDSH
datasets. Finally, we ran an extensive performance analysis
of our system on a wearable board.
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