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Abstract. Tracking objects moving around a person is one of the key steps in
human visual augmentation: we could estimate their locations when they are out
of our field of view, know their position, distance or velocity just to name a few
possibilities. This is no easy task: in this paper, we show how current state-of-
the-art visual tracking algorithms fail if challenged with a first-person sequence
recorded from a wearable camera attached to a moving user. We propose an eval-
uation that highlights these algorithms’ limitations and, accordingly, develop a
novel approach based on visual odometry and 3D localization that overcomes
many issues typical of egocentric vision. We implement our algorithm on a wear-
able board and evaluate its robustness, showing in our preliminary experiments
an increase in tracking performance of nearly 20% if compared to currently state-
of-the-art techniques.
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1 Introduction and Related Work

The rapid progresses in the development of systems based on wearable cameras and
embedded computing devices have created the conditions to allow computer vision
technologies to augment experience in everyday life activities such sport, education,
social interactions, cultural heritage visits etc. The new and challenging setting that re-
sults from the adoption of an egocentric perspective in the video analysis provides a
unique insight into many problems that have already been addressed by the traditional
computer vision.

Egocentric vision (or ego-vision) is a recent topic that aims at augmenting human
visual capabilities and perception by enhancing our field of view [3], analyzing social
interactions [4], localizing objects [6] or extracting salient moments from our daily lives
[10] based on what we see.

The adoption of an egocentric perspective creates new challenges for traditional
computer vision, in particular when facing the task of tracking moving objects. It is a
complex field in which many results have been achieved [11], but there still are open
issues. A working tracker should handle scale, illumination changes, background clut-
ter, partial occlusions and keep track of the object of interest overcoming these chal-
lenges. A notable solution is the Fragments-based Robust Tracking (FRT) [1] that ad-
dresses the problem of partial occlusions representing the object template by multiple
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Fig. 1: An example an ego-vision sequence where fast camera motion causes objects
and people to exit the camera field of view.

image patches. While being very fast and accurate in the case of small changes in ob-
ject appearance, this method tends to worsen its performances if challenged with severe
changes in appearance. To address this issue, tracking approaches that employs discrim-
inative classifiers to identify the target opposed to the background have been proposed.
The Hough-Based Tracker (HBT) by Godec et al. proposed in [7] is a tracker that aims
at non-rigid targets in a discriminative classifier with segmentation of the object itself.
The Structured Output Tracking with Kernels (STR) [8] algorithm employs a structured
output supervised classifier to acquire training data directly from the image integrating
the labeling procedure and its learner. Tracking Learning and Detection (TLD) [9] com-
bines the results of an optical flow tracker and a detector, which can identify errors and
learn from them.

Despite being a core component of many algorithms based on video analysis, very
few works use visual tracking applied to ego-vision settings. Alletto et al. [2] employ
HBT with some adjustments to better suit the first person perspective. Fan et al. [3]
track features clustering motion based on the optical flow of the scene. However, these
works employ trackers for a specific task in very constrained settings and lack general-
ity.

In this work, we address the problem of tracking a single object of interest from a
first person perspective. A typical example is to follow the detected shape of a friend
walking with the camera wearer, which is one of the most challenging situations in
visual tracking. Due to the novelty of the task if applied to a first-person wearable
camera view, this work first discusses the main issues of egocentric tracking such as
fast camera motion, see Fig. 1. Then, we propose a 3D localization method based on
monocular visual odometry that is used to enforce a tracking framework. By intervening
on its detection phase predicting the location where to expect to see the object after it
re-enters the field of view following a loss or a total occlusion, we can re-initialize the
tracker even when the appearance of the object differs from the learned model in a way
the would have otherwise prevented the detection.

We show that the proposed method outperforms state-of-the-art techniques by nearly
20% and, while being an initial study on the matter of visual augmentation via egocen-
tric object tracking, it provides promising results and encourages further research on
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Fig. 2: The typical schema of a tracking algorithm. Each block, represented in different
colors, is usually implemented in various ways thus differentiating trackers from one
another.

the topic. We also implement the described technique on a wearable embedded device
coupled with a head mounted camera capable of acquisition and processing.

2 Motivations

In this section, we consider the typical approach to tracking a single moving object
and discuss the challenges posed by the setting of first person camera views. Here,
tracking-by-detection methods, since they need a specific detector for a specific target
(e.g. a people detector) are not taken into account; in fact they cannot be used if the
targets are unknown, as in this context.

The typical workflow of a tracking algorithm is shown in Figure 2: after a detec-
tion step, several candidate Regions of Interest (RoIs) are automatically selected by the
tracker (e.g. around the previous position, with Gaussian scattering, etc) and visual fea-
tures like appearance, position, and motion are extracted and used both for the frame
under evaluation (step 2.1) and for the internal model (step 2.2). Then tracker (step 3), is
characterized by an inference method that associates candidate RoIs to model(s), solv-
ing an optimization problem or performing a classification. The trackers often differ
from each-other in the methods used to update the model (step 4): some of them do not
modify the model at all, others keep more models of the target object, updating their
short-term and long-term memory with some learning step.

Since the issues that make tracking so difficult are many, there is no tracker that
can outperform the others regardless of the setting. In [11], thirteen different problems
which can potentially lead a tracker to failure have been considered. In order to analyze
them from an egocentric perspective, we could divide them in three categories: i) Light-
ing: lighting conditions and variations, the target surface, transparency and its shape in
general; ii) Motion: motion smoothness, the motion coherence (between target, camera
and background), the camera motion, the camera zoom and the long-term motion (of
both target and camera); iii) Scene: the scene clutter, confusion, contrast or occlusions.
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All these issues can occur simultaneously making the problem of tracking still un-
solved. Considering videos taken from an egocentric perspective, our experiments show
that the most crucial characteristic of this setting are the peculiar motion patterns. We
can state that in egocentric tracking the main motion issues can be summarized as

– Camera motion: the camera is moving as the head of its owner, thus is uncon-
strained and often unpredictable. Trackers based on motion estimation alone (e.g.
optical flow tracking) are likely to fail due to the significant amount of noise intro-
duced by the ego-motion.

– The long-term motion: since the camera is not fixed, a long-term component of
motion must be considered. In fact, the tracked object can change its appearance
substantially due to a different point of view of the observer derived from his mo-
tion. This results in the need to keep a complex object model capable of recognizing
different appearances of the same object, e.g. TLD object model.

– The motion coherence: the complexity of human attention patterns lead to very
challenging situations in ego-vision. The motion coherence between the target, the
background or the camera is indeed far from granted. Even a still object could
bounce in and out of the camera field of view due to ego-motion, or a still back-
ground can be all but still, having significant apparent motion. Trackers that rely on
robust training such as Struck, utterly fail in this setting due to the impossibility to
learn an effective representation of the object vs background motion or appearance.

For these reasons, this work focuses on analyzing some of the most promising track-
ers currently available [11], highlighting their limitations when challenged with ego-
vision sequences. Furthermore, instead of focusing on one of the issues and developing
a new tracker to handle that particular situation, we develop a module based on visual
odometry that can enhance the tracking performance of existing algorithms, a more
general solution to a problem which is still to be solved.

3 Proposed Method

In order to overcome the issues of egocentric tracking, we develop a method that in-
tegrates 3D target localization into the detection component of the tracking algorithm.
Based on experimental results (see the following section) we extend the recent tracker
TLD [9] with a module that supports detection with 3D information. However, our
approach can be adapted to other visual tracking techniques such as Struck [8], by in-
troducing in its Structured SVM inference procedure a set of weights learned using 3D
target localization.

TLD framework features three main components: a Tracker which estimates the
object’s motion based on a Median-Flow algorithm. This component of the framework
is likely to fail if the object exits the camera field of view and it is not able to resume
the tracking by itself. A Detector intervenes treating each frame independently and per-
forms the detection localizing the appearances of the object which have been observed
and learned in the past, recovering tracking after the Tracker fails. The Learning com-
ponent observes the performance of both Tracker and Detector, estimates their error
and adds training samples to its object model.
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Fig. 3: Example sequence of the proposed approach.

A typical ego-vision characteristic is that the camera wearer can have very fast head
motion, e.g. when he is looking around for something. Another example is the object
of interest being a person walking with the subject wearing the camera, resulting in
him looking at the path they are walking as often as to his companion. With these
characteristics in mind, it is clear how important the detection phase of the tracking
process is, since the object of interest can be outside of the field of view for a significant
part of the sequence.

In particular, the TLD detector is based on a sequence of classifications. Patches
are densely sampled in the image at different scales obtaining a large set of candidates
which is iteratively reduced by following rejection steps. First all patches with low
gray-scale values variance are rejected to rapidly eliminate a large set of non-object
candidates. Then patches that passed the first step are classified by an ensemble of
classifiers based on pixel comparison trained offline.

The final step is a NN classifier that compares the patches with the learned object
model M. This model is composed by a set of positive p+ and negative p− patches
that respectively encode object and background parts. A patch p is recognized as the
object of interest if its relative similarity with the model is greater than a threshold
Sr(p,M) > θNN . The relative similarity is defined as Sr = S+

S++S− where

S+(p,M) = maxp+i ∈M
S(p, p+i ) and S−(p,M) = maxp−i ∈M

S(p, p−i ) (1)

are the similarity with the positive and negative nearest neighbors.
However, detection based on the appearance encoded in the learned model M can

fail if the object changes too fast or the change takes place out of the camera view. To
deal with this issue we extend the detection component by adding 3D motion estimation
of the head and the object to model its behavior when it is not visible.

To compute the head motion we use “Semi-Direct Visual Odometry” (SVO) algo-
rithm [5] that can be run in real-time on an on-board embedded computer, since it elim-
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inates the need of costly feature extraction for motion estimation operating directly on
pixel intensities. SVO estimates the rigid body transformation between two consecutive
camera poses Gk,k−1 minimizing the negative log-likelihood of the intensity residual:

Gk,k−1 = argmin
G

∫ ∫
R

ρ[δI(G,u)]du. (2)

where δI is the photometric difference between pixels observing the same 3D point
and ρ := 1

2 ‖·‖
2.

When the object is visible and tracked, given the bounding-box at the frame k and
the head motion estimation Gk+∆t,k provided by the SVO algorithm, we can estimate
its 3D motion model and use it to predict the image coordinates where the target should
appear after a loss. In particular, let ck = (xk, yk) be the center of the bounding-box
at the frame k, we can predict the image point coordinates where the center should be
located when it becomes visible again after an interval ∆t:

ĉk+∆t = P (Gk+∆t,k · (P−1(ck, d) +∆C(t))). (3)

where P is the projection model that maps 3D points to the image coordinates, d
is an approximation of the depth based on the scale of the detection at the frame k and
∆C is the 3D target motion that we define, assuming a linear velocity, as:

∆C∆t = Ck + Vk∆t (4)

where Vk is the velocity vector of the center of the bounding-box at the frame k.
While the assumption of linear velocity may appear limiting, the setting of ego-vision
often requires the tracking of objects that are somehow related to the person wearing
the camera, e.g. people walking beside him, and thus the assumption is often satisfied.

Based on this estimation the we extend the relative similarity including the dis-
placement between the estimated center of the bounding-box ĉk+∆t and the center of
the candidate patch p in the image coordinates. The new similarity function is defined
as:

Sr(p,M, ĉk+∆t) = (1 + e−(
d2x+d2y

2σ2
)) · Sr(p,M) (5)

where dx and dy are the displacement components in x and y, and σ is the variance
of two-dimensional Gaussian function center in ĉk+∆t (based on preliminary experi-
ments we fix σ = 20). This new similarity is used to identify whether the patch is
recognized as the object of interest by comparing it to the threshold θNN .

We observed that patches where the relation Sr(p,M) < θNN < Sr(p,M, ĉk+∆t)
is satisfied are likely to contain a detail of the target. While these patches are sufficient to
restart the Tracker, they are not suitable to provide an accurate localization of the object
of interest due to scale errors. To address this issue we adjust the scale considering the
size of the patch and the dimension of the bounding-box at the frame k. This allows us
to resume tracking with a more robust initialization and follow the target more properly.

Figure 3 presents an example of our method applied to ego-vision sequence. The
green bounding box is the chosen detection, the blue ones represent the image patches
obtained from the NN classifier. The cyan patch in the last frame satisfies Sr(p,M, ĉk+∆t) >
θNN and is used as input in the scale adjustment step to compute green detection. The
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Fig. 4: Comparison between TLD and the two variations of our approach. On the left:
the results of our method using the SLAM localization. On the right: SLAM data per-
turbed with gaussian noise. The displayed results are obtained concatenating and sorting
the frames of the different video sequences.

two-dimensional Gaussian function, that predicts the center of the object of interest ck,
is represented in shades of red and yellow.

4 Experimental Results

We described the differences and challenges posed by egocentric perspective compared
to the traditional tracking setting.

We now evaluate the following trackers on first-person sequences to show their per-
formance: STR [8], HBT [7], TLD [9], FRT [1]. We also employ a baseline NCC to
show the performance of a simple tracking by detection approach compared to more
complex methods. All these trackers achieve good results on standard benchmarks and
datasets [11], but substantially different performances are to be expected when consid-
ering the egocentric perspective of first person videos. Indeed, these trackers are not
designed to cope with the abrupt losses of the target due to head and camera motion, or
changes in scale that are a consequence of movement. To validate this statement we col-
lected a set of five ego-vision sequences that contain people interactions in both indoor
and outdoor environment. Videos are recorded and processed using a wearable Odroid-
XU board, that embeds the ARM Exynos 5 SoC, and a glass-mounted Matrix Vision
BlueFox global shutter camera. We add a 3000 mAh battery pack to make it portable.

Figure 5 shows the results of this evaluation of the aforementioned trackers on one
of the ego-vision sequences that contains changes in illumination and fast camera mo-
tion induced by head motion and walking.

It can be noticed how the challenging aspects of the ego-vision scenario, namely the
fast camera motion and the target exiting the camera field of view after very few frames,
significantly worsen the performance of state-of-the-art trackers. In particular, HBT and
FRT fail due to the lack of the ability to cope with the exit of the target from the frame.
STR, while trying to adapt to such a situation, does not perform any loss detection and
quickly adapts its model to the background. A simple tracking by detection approach
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Fig. 5: Tracking results on the ego-vision sequences.

(NCC) can recover tracking if the appearance of the object becomes close to the initial
template but it is shown to be unable to provide sufficient results in most cases. Among
the evaluated trackers, due to its hybrid framework of tracking and detection, TLD
results in being the more robust to the recurring loss of the target but still presents a low
overlap measure. In fact its detector, while often being able to resume tracking after a
loss, requires the new appearance to have already been observed and encoded in the
model. In egovision it often occurs that the target can change its appearance out of the
camera field of view thus compromising its ability to detect the object.

Furthermore, consider the tracking upper bound of Figure 5, which is the perfor-
mance obtained by the combination of the evaluated trackers by taking at each frame
the best result in terms of overlap. This upper bound shows little room for improve-
ment and demonstrates the requirement of a different approach to the task of egocentric
visual tracking.

Figure 4 shows the improvement tied to the enforcing of visual tracking with 3D
localization. In particular, we present a comparison between the TLD tracker and two
variations of our approach: 3D localization estimation with no additional scale adjust-
ment (Our Method - 3D loc) and improved scale estimation considering the size of the
patch and the dimension of the bounding-box at the previous frames (Our Method - 3D
loc + Scale). Our complete approach can achieve an average overlap of 35.26% while
on the same data TLD scores a 15.28%, featuring an increase of 19.98%.

It can be noticed how if the prediction of the 3D position of the center of the object
is accurate enough, performing the scale adaptation step is not strictly required since
it only slightly improves results. On the other hand, if the localization results are less
precise, not taking into account the errors in the scale of the detection severely impact of
the performance of our method. As Fig. 4 shows, adding a gaussian noise of σ = 15px
to the predicted position requires the scale adjustment step to work properly. This is due
to the error introduced by the noise excessively perturbing the localization resulting in
the impossibility to resume tracking.
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5 Conclusions

In this paper we presented a method that uses a semi-direct monocular visual odometry
algorithm to infer the head motion of the camera wearer and subsequently compute the
3D location of the target. This allows us to build a target motion model used to predict
the image coordinates where to expect it to reappear after a loss. By exploiting this
information we can intervene in the detection component of a tracker and effectively
leading it to a more robust detection. While this is an initial study on the matter, our
preliminary results validate our method by showing a significant improvement of the
state-of-the-art performance.
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