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Abstract. Text-to-Image Synthesis refers to the process of automatic
generation of a photo-realistic image starting from a given text and is
revolutionizing many real-world applications. In order to perform such
process it is necessary to exploit datasets containing captioned images,
meaning that each image is associated with one (or more) captions de-
scribing it. Despite the abundance of uncaptioned images datasets, the
number of captioned datasets is limited. To address this issue, in this pa-
per we propose an approach capable of generating images starting from
a given text using conditional generative adversarial network (GAN)
trained on uncaptioned images dataset. In particular, uncaptioned im-
ages are fed to an Image Captioning Module to generate the descrip-
tions. Then, the GAN Module is trained on both the input image and the
“machine-generated” caption. To evaluate the results, the performance of
our solution is compared with the results obtained by the unconditional
GAN. For the experiments, we chose to use the uncaptioned dataset
LSUN-bedroom. The results obtained in our study are preliminary but
still promising.

Keywords: Generative Adversarial Networks (GANs), StackGAN, Self-
Critical Sequence Training (SCST), Text-to-Image Synthesis

1 Introduction

Text-to-Image Synthesis, also called Conditional Image Generation, is a process
that consists in generating a photo-realistic image given a textual description. It
is a challenging task and it is revolutionizing many real-world applications. For
example, starting from a Digital Library of adventure books it could be possible
to enrich the reading experience with computer-generated images of the locations
explored in the story, while a Digital Library of recipe books may be enriched
with images representing the steps involved in a given recipe. In addition, such
images may be used to exploit Information Retrieval systems based on visual
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similarity. Due to its great potentiality and usefulness, it raised a lot of interest
in the research fields of Computer Vision, Natural Language Processing, and
Digital Libraries.

One of the main approaches used for the text-to-image task involves the use
of Generative Adversarial Networks (GAN) [6]: starting from a given textual
description, GANs can be conditioned on text [25], [24], [35] in order generate
high-quality images that are highly related to the text meaning.

To condition a GAN on text, captioned images datasets are needed, meaning
that one (or more) captions must be associated to each image. Despite the large
amount of uncaptioned images datasets, the number of captioned datasets is
limited. For example, LSUN [33] dataset, which consists in more than 59 million
labeled images for each of 10 scene categories and 20 object categories [33].
The LSUN-bedroom dataset contains images from LSUN dataset tagged with
the “bedroom” scene category. It contains around ∼ 3, 000, 000 images [33],
but it does not contain the associated captions. This may lead to a difficulty
in training a conditional GAN to generate bedroom images related to a given
textual description, such as “a bedroom with blue walls, white furniture and a
large bed”. In this paper we propose an innovative, though quite simple approach
to address this issue as shown in Figure 1.
First of all, a captioning system (that we call Image Captioning Module) is

Fig. 1. Our pipeline: captioned images are used to train the Image Captioning Module;
uncaptioned images are then captioned through the Trained Image Captioning Module
and both the image and the generated captions are used to train the GAN Module;
finally, the Trained GAN Module is used to generate an image based on an input
caption.

trained on a generic captioned dataset and used to generate a caption for the
uncaptioned images. Then, the conditional GAN (that we call GAN Module)
is trained on both the input image and the “machine-generated” caption. A
high-level representation of the architecture is shown in Figure 2. To evaluate
the results, the performance of the GAN using “machine-generated” captions
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are compared with the results obtained by the unconditional GAN. To test and
evaluate our pipeline, we are using the LSUN-bedroom [33] dataset.

Fig. 2. Pipeline: images are fed to a captioning system that outputs its captions. The
generated captions and the images are then given as input for training the conditional
GAN.

The results obtained in the experiments are very preliminary yet very promis-
ing. According to our study, the GAN Module does not learn how to produce
meaningful images, with respect to the caption meaning, and we hypothesize
that this is due to the “machine-generated” captions we use to condition the
GAN Module. The Image Captioning module is trained on the COCO dataset
[17], which contains captioned images for many different classes of objects and
intuitively this should lead the Image Captioning Module to learn how to pro-
duce captions for bedroom images as well. Despite being able to produce the
desired captions, we notice that the “machine-generated” captions are often too
similar and not detailed for different bedroom images. The last section of the
paper proposes some approaches that can deal with these problems.

2 Related Work

In 2014, Goodfellow et al. introduced Generative Adversarial Networks (GAN)
[6], a generative model framework that consists in training simultaneously two
models: a generator network and a discriminator one. The generator network
has the task of generating images as real as possible, while the discriminator
network has to distinguish the generated images from the real ones. Generative
models are trained to implicitly capture the statistical distribution of training
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data; once trained, they can synthesize novel data samples, which can be used
for example in the tasks of semantic image editing [38] and data augmentation
[1].

GANs can be trained to sample from a given data distribution, in such case
a random vector is provided as input to the generator. Otherwise, as in the
case of text-to-image synthesis, they can be trained conditionally, meaning that
an additional variable is provided as input to control the generator output. In
certain formulations, the discriminator observes the conditioning variable too,
during training. In the literature, several possibilities were tested for the variables
used to condition a GAN: attributes or class labels (e.g. [2], [20]), images (e.g.
for the tasks of photo editing [38] and domain transfer [11]).

Several methods have been developed to generate images conditioned on text.
Mansimov et al. [18] built an AlignDRAW model trained to learn the correspon-
dence between text and generated images. Reed et al. in [26] used PixelCNN
to generate images using both text descriptions and object location constraints.
Nguyen et al. [19] used an approximate Langevin sampling approach to generate
images conditioned on text, but it required an inefficient iterative optimization
process. In [25], Reed et al. successfully generated 64 × 64 images for birds and
flowers conditioning on text descriptions. In their follow-up work [24], they were
able to generate 128 × 128 images by using additional annotations on object
part locations. Denton et al. in [5] proposed the Laplacian pyramid framework
(LAPGANs), which is composed of a series of GANs. A residual image is condi-
tioned at each level of the pyramid on the image of the previous stage to produce
an image for the next stage. Also in [13], Kerras et al. use a similar approach
by incrementally adding more layers in the generator and in the discriminator.
[34] and [35] suggest the use of a so-called sketch-refinement process, where the
images are first generated at low resolutions using a GAN conditioned over the
textual description, and then refined with another GAN conditioned on both the
image generated at the previous step and the input textual description. [9] and
[15] infer a semantic label map by predicting bounding boxes and object shapes
from the text, and then synthesize an image conditioned on the layout and the
text description. A recent work by Qiao et al. [21] uses a three-step approach
where it first computes word- and sentence-level embedding from the given tex-
tual description, then it uses the embeddings to generate images in a cascaded
architecture, and finally starting from the image generated at the previous step
it tries to regenerate the original textual description, in order to semantically
align with it. Although several different state-of-the-art architectures may be
chosen for the task, such as HDGAN [36] and AttGAN [32], in our pipeline we
decided to use StackGAN-v2 [35] as the conditional GAN component, given the
availability of its code on GitHub.

Recently, several impressive results [37], [16], [27] were obtained for the Im-
age Captioning (or image-to-text) task, which deals with the generation of a
caption describing the given image and the objects taking part to it. It is an
important task that raises a lot of interest in the Computer Vision and Natural
Language Processing research fields. A recent and comprehensive survey about
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the task is provided by Hossain et al. in [10]. Some of the approaches used for this
task involve the use of Encoder/Decoder networks and Reinforcement learning
techniques.

The encoder/decoder paradigm for machine translation using recurrent neu-
ral networks (RNNs) [3] inspired [12], [30] to use a deep convolutional neural
network to encode the input image, and a Long Short-Term Memory (LSTM)
[8] RNN decoder to generate the output caption. Given the unavailability of
labeled data, recent approaches to the image captioning task involve the use of
reinforcement learning and unsupervised learning-based techniques. [37] and [16]
use actor-critic reinforcement learning methods, where a “policy network” (the
actor) is trained to predict the next word based on the current state, whereas a
“value network” (the critic) is trained to estimate the reward of each generated
word. These techniques overcome the need to sample from the policy (actors)
action space, which can be enormous, at the expense of estimating future re-
wards. Another approach, used by Ranzato et al. in [22], consists in applying
the REINFORCE algorithm [31]. A limitation of this algorithm consists in the
requirement of a context-dependent normalization to tackle the high variance
encountered when using mini-batches. The approach we are following uses Self-
Critical Sequence Training (SCST) [27] which is a REINFORCE algorithm that
utilizes the output of its own test-time inference algorithm to normalize the re-
wards it experiences: doing so, it does not need neither to estimate the reward
signal nor the normalization.

3 Our Approach

We propose a pipeline whose goal is to generate images by conditioning on
“machine-generated” captions. This is fundamental when image captions are not
available for a specific domain of interest. Thus, the proposed solution involves
the use of a generic captioned dataset, such as the COCO dataset, to make the
Image Captioning Module capable of generating captions for a specific domain.

To do so, we want to explore the possibility of using an automatic system
to generate textual captions for the images and use them for the training of a
Generative Adversarial Network. For achieving our goal, we built a pipeline com-
posed by an Image Captioning Module and a GAN Module, as shown in Figure
1. First of all, the Image Captioning Module is trained over a generic captioned
dataset to generate multiple captions for the input image. Then, real images are
given as input to the Trained Image Captioning Module, which outputs multiple
captions for each image. The generated captions together with the images are
then fed to the GAN Module, which learns to generate images conditioned on
the “machine-generated” captions. By feeding the GAN with multiple captions
for each image, the GAN can better learn the correspondence between images
and captions.

In the following sections, we detail the two modules used in our pipeline: the
Image Captioning Module and the GAN Module.
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3.1 Image Captioning Module

The goal of the Image Captioning Module is to generate a natural language
description of an image. Good performance in this task are obtained by learn-
ing a model which is able to first understand the scene described in the image,
the objects taking part to it and the relationships between them, and then to
compose a natural language sentence describing the whole picture. Given the
complexity of such a task, it is still an open challenge in the fields of Natural
Language Processing and Computer Vision. The task of open domain caption-
ing is a challenging task. It requires a fine-grained understanding of the whole
entities, attributes and relationships in an image. In our pipeline, we are imple-
menting our Image Captioning Module in a similar way as the one proposed in
[27], meaning that we also use a captioning system based on FC models. It has
been built using an optimization approach that is called Self-Critical Sequence
Training (SCST).

Typical deep learning models used for the Image Captioning task are trained
with the “teacher-forcing” technique, which consists in maximizing the likelihood
of the next ground-truth word given the previous ground-truth word. This has
been shown to generate some mismatches between the training and the inference
phase, knows as “exposure bias”. Moreover, the metrics used during the testing
phase are non-differentiable (such as BLEU and CIDEr), meaning that the cap-
tioning model can not be trained to directly optimize them. To overcome these
problems, Reinforcement Learning techniques such as the REINFORCE algo-
rithm have been used. SCST is a variation and an improvement of the popular
REINFORCE algorithm that, rather than estimating a baseline to normalize the
rewards and reduce variance, utilizes the output of its own test-time inference
algorithm to normalize the rewards it experiences. This means that it is forced
to improve the performance of the model under the inference algorithm used at
test time. Practically, SCST has much lower variance than REINFORCE and
can be more effectively trained on mini-batches of samples using SGD. Moreover,
it has been shown that SCST system has achieved state-of-the-art performance
by optimizing their system using the test metrics of the MSCOCO task. Prac-
tically, it has been found that SCST has much lower variance, and can be more
effectively trained on mini-batches of samples using SGD. Since the SCST base-
line is based on the test-time estimate under the current model, SCST is forced
to improve the performance of the model under the inference algorithm used at
test time. In addition, this encourages training consistency like the maximum
likelihood-based approaches except it optimized sequence metrics.

3.2 GAN Module

The GAN Module has the major role of learning to generate images by condition-
ing on the “machine-generated” captions. In particular, we are using StackGAN-
v2 [35] as our GAN Module.

StackGAN-v2 consists of a multiple stage generation process, where high-
resolution images are obtained by initially generating low-resolution images
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which are then refined in multiple steps. It consists in a single end-to-end net-
work composed by multiple generators and discriminators in a tree-like structure.
Different branches of the tree generate images of different resolutions: at branch
i, the generator Gi learns the image distribution pGi at that scale, while the
discriminator Di estimates the probability of a sample being real. The frame-
work of StackGAN-v2 has a tree-like structure, that takes as input the noise
vector z ∼ pnoise. The noise z is transformed in hidden feature layer by layer.
The hidden features hi for each generator Gi are calculated by a non-linear
transformation

h0 = F0(z); hi = Fi(hi−1, z), (1)

where hi represents hidden features for the ith branch, m is the total number
of branches, and Fi are modeled as neural networks. The noise vector z is con-
catenated to the hidden features hi−1 as the inputs of Fi for calculating hi.
The generators produce samples at different scales (s0, s1, ..., sm−1) based on
the hidden features at different layers (h0, h1, ..., hm−1).

si = Gi(hi), i = 0, 1, ...,m− 1, (2)

where Gi is the generator for the ith branch. Since we are more interested in the
conditional case, we are not reporting the loss function used by the generator
and the discriminator in the unconditional setting, for which more details can
be found in [35].
The discriminator Di takes a real image xi or a fake sample si as input and is
trained to classify them as real or fake by minimizing the cross entropy loss:

LDi
= −Exi∼pdatai

[logDi(xi)] − Exi∼pGi
[log(1 −Di(si))]︸ ︷︷ ︸

unconditional loss

−Exi∼pdatai
[logDi(xi, c)] − Exi∼pGi

[log(1 −Di(si, c))]︸ ︷︷ ︸
conditional loss

(3)

where xi is an image from the true image distribution pdatai at the ith scale, si
is from the model distribution pGi

at the same scale. While StackGAN-v2 [35]
follows the approach of Reed et al. [23] to pre-train a text encoder to extract
visually-discriminative text embeddings of the given description, in our case we
use Skip-Thought [14], that works at the sentence level, to generate the text
embeddings (c in the equations 3 and 4). Sentences that share semantic and
syntactic properties are mapped to corresponding vector representations [14].

The multiple discriminators are trained in parallel each one for a different
scale, while the generator is instead optimized to jointly approximate multi-
scale image distributions pdata0

, pdata1
, ..., pdatam−1

by minimizing the following
loss function:

LG =

m∑
i=1

LGi , LGi = −Esi∼pGi
[logDi(si)]︸ ︷︷ ︸

unconditional loss

−Esi∼pGi
[logDi(si, c)]︸ ︷︷ ︸

conditional loss

(4)
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where LGi
is the loss function for approximating the image distribution at the

ith scale. The unconditional loss is used to determine whether the image is real
or fake, while the conditional loss is used to determine if the image and the
condition match.

4 Experimental Results

In this section, we present the preliminary results of the experiments involving
the proposed pipeline. The Image Captioning Module was trained on the COCO
dataset [17], which contains 120, 000 generic images tagged with categories and
captioned by five different sentences each. The uncaptioned dataset that we
considered is the LSUN [33] dataset, which consists in more than 59 million
labeled images. From the LSUN dataset, we first select the ∼ 3, 000, 000 images
tagged with the “bedroom” scene category and from that set a subset of the first
120, 000 images is selected: 80, 000 are then used to train the GAN and 40, 000 as
test set. Later on in this paper, the selection of the ∼ 3, 000, 000 images tagged
with the “bedroom” scene category is called “LSUN-bedroom”.

A typical metric used to evaluate both the quality and the diversity of gener-
ated images is the Inception Score [28]. Unfortunately, the type of image of the
LSUN dataset is very different from those used by ImageNet [35,4], therefore it
has been shown that the Inception Score is not a good indicator for the quality
of generated images [35]. So we decided not to report the obtained scores.

We performed three experiments over the considered dataset.
The first experiment consists in training the GAN Module on the whole

LSUN-bedroom dataset (∼ 3, 000, 000 images). This is done because of two rea-
sons: first, it serves as a baseline for the next experiment; second, we compare
the results obtained by our computing facilities with the results obtained in [35],
since with our graphics card we are limited to a lower batch size of 16. Figure
4 shows some examples of generated images, and it is possible to see that the
quality of the generated images is similar to those shown in Figure 3 [35].

Fig. 3. Examples of images generated by the StackGAN Module trained on the whole
LSUN-bedroom dataset.

To reproduce the results reported in the paper, we used an NVIDIA GTX
1080 8GB machine. It took us around one month to train the GAN Module on the
whole LSUN dataset. Because of this, we decided to explore and understand how
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Fig. 4. Examples of images generated by the GAN Module trained on the whole LSUN-
bedroom dataset.

the GAN Module performs with less training images. In the second experiment,
the training of the GAN Module without conditioning is done on a subset of
LSUN-bedroom, consisting of 120, 000 images. Some of the results obtained in
this experiment are showed in Figure 5. Although the quality of the generated
images is slightly reduced, it is possible to see that the semantic content is still
clear and defined.

Fig. 5. Examples of images generated by the GAN Module trained on a part of the
LSUN-bedroom dataset.

Finally, to test our pipeline, we used the Image Captioning Module to gen-
erate captions for the images contained in the considered subset of the LSUN-
bedroom dataset. Then, the GAN Module was trained on these same images and
conditioned by the “machine-generated” captions. About the preliminary results
that we obtained, some examples are shown in Figure 6. We suspect the problem
is due to the similarity of the “machine-generated” captions: the LSUN-bedroom
dataset does not come with captions and thus the Image Captioning Module is
trained on a generic dataset (COCO) and not for that specific dataset. Because
of this, the Image Captioning Module is unable to produce detailed and varied
captions for different bedroom images. In addition, Usually GANs used noise
vector to generate images which always different from each other [6]. In our ex-
periment, the noise vector is taken as input by the model and used to generate
an image. Then, the captions are used to yield the embeddings, which are also
used as noise by the generator. The fact that the noise is almost always the same
could be the cause of the observed problem.

We found that the scores for the LSUN-bedroom dataset seem to not fully
correlate with the quality of the generated images. As explained in [35], this may
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Fig. 6. Examples of images generated by the GAN Module trained on a part of the
LSUN-bedroom dataset and conditioned on “machine-generated” captions.

be due to the inception score being trained on the inception dataset, and thus
it does not work well on datasets with specific types of images. Also, it has to
be considered that different datasets get inception scores in different ranges. For
this reason, inception scores must not be compared across different datasets.

5 Conclusion

We explored the problem of conditional image generation using Generative Ad-
versarial Networks with machine-generated captions. For this task, we built a
pipeline to first generate captions for uncaptioned datasets and then to use the
“machine-generated” captions to condition a GAN. To test our pipeline, we run
experiments on the LSUN-bedroom dataset, which is a subset of the LSUN
dataset containing uncaptioned images of bedrooms, and then compare the gen-
erated images in the unconditional setting and in the conditional setting where
“machine-generated” captions are used. The results observed in the experiments
do not achieve success in the task of conditioning with “machine-generated”
captions. So we identify, analyze, and propose possible solutions to the obstacles
that need to be overcome.

The Image Captioning Module that we trained on the COCO dataset seems
to generate captions too similar to each other. Moreover, The captions we gen-
erated lack details and contain some errors. This is probably related to the fact
that more diverse and detailed captions are needed during training in order
to achieve significant improvements. During a subsequent review of works on
captioning, we found a work from Shetty et al. [29], that promises to generate
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more different captions, instead of variations of the same caption. This result is
achieved by using GANs for image captioning instead of other traditional meth-
ods. An open question is whether with a bigger dataset the GAN could learn
the image-captions correspondence, even when captions are very similar for each
image. We believe improving the quality of the generated caption is the main
challenge for our method. An hybrid approach could make our proposed method
work by making humans write captions on a subset of the dataset, then use the
obtained captions to train a captioning system. For generating human captions,
crowdsourcing platforms like Amazon Mechanical Turk (AMT) could be used.
We are currently working on this idea because it’s likely that it will lead to im-
provements in the quality of generated bedroom images, given that AMT could
make it possible to have high-quality and more diverse captions. Moreover, we
are also considering the use of the Frchet Inception distance [7] to evaluate the
generated captions and images.
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