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Abstract

Motivation: Implicit solvent models play an important role in describing the thermodynamics and
the dynamics of biomolecular systems. Key to an efficient use of these models is the computation
of Generalized Born (GB) radii, which is accomplished by algorithms based on the electrostatics of
inhomogeneous dielectric media. The speed and accuracy of such computations is still an issue especially
for their intensive use in classical molecular dynamics. Here, we propose an alternative approach that
encodes the physics of the phenomena and the chemical structure of the molecules in model parameters
which are learned from examples.
Results: GB radii have been computed using i) a linear model and ii) a neural network. The input is the
element, the histogram of counts of neighbouring atoms, divided by atom element, within 16 Å. Linear
models are ca. 8 times faster than the most widely used reference method and the accuracy is higher with
correlation coefficient with the inverse of "perfect" GB radii of 0.94 vs 0.80 of the reference method.
Neural networks further improve the accuracy of the predictions with correlation coefficient with "perfect"
GB radii of 0.97 and ca. 20% smaller root mean square error.
Availability: We provide a C program implementing the computation using the linear model, including
the coefficients appropriate for the set of Bondi radii, as supplementary material. We also provide a
Python implementation of the neural network model with parameter and example files in the supplementary
material as well.
Contact: federico.fogolari@uniud.it, giuseppe.serra@uniud.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Implicit solvent models have a long history. Indeed the dielectric constant
of materials, used first by Faraday to describe their electrostatic behaviour,
is the first implicit representation of matter electrostatics (Whittaker,
1910). Models for ionic solutions based on the Poisson equation and
the Boltzmann distribution were introduced more than one century
ago, and further used in the following decades to model polyionic
molecules, including proteins, their ionization and their solvation free
energy (Fogolari et al., 2002). A field where implicit solvent models

have been particularly fruitful is represented by molecular dynamics
(MD) simulations which are widely used to understand the behaviour of
biomolecules. In many applications, MD simulations are used to generate
a conformational ensemble for a given system, rather than to get kinetic
informations. In explicit solvent simulations, it is quite normal that 90% of
the computational time is spent on simulating the solvent, which is often
simply not considered in the analysis of the results. These well known
considerations have led to the development of implicit solvent models
suitable for MD simulations. An additional advantage is that solvation
free energy (including entropy) is simply described by implicit solvent
models (Fogolari et al., 2018).
Molecular dynamics simulations based on the Poisson-Boltzmann
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equation implicit solvent representation, have indeed ben proposed.
However this approach is characterized by an intensive computational load
and by problems related to the numerical solutions on spatial grids (Sharp,
1991; Niedermeier and Schulten, 1992; Gilson et al., 1995; David et al.,
2000; Fogolari et al., 2003). Mostly in the nineties, Generalized Born (GB)
models have been developed, with different ways to compute the GB radii
which are the key parameters of the model (Constanciel and Contreras,
1984; Still et al., 1990; Hawkins et al., 1995, 1996; Qiu et al., 1997).
Solvation and interaction energies are computed based on generalized Born
radii (Bashford and Case, 2000; Onufriev and Case, 2019).
Theoretical "perfect" GB radii (Onufriev et al., 2002), computed
using the reference Poisson-Boltzmann equation (PBE) model, may be
approximated very accurately using surface integrals, but this possibility
is ruled out for use in MD simulations, because of the computational
cost. For this reason, surface (or equivalently) volume integrals are usually
approximated using sums over neighbouring atoms.
The model by Onufriev, Bashford and Case (Onufriev et al., 2004) (OBC)
for computing GB radii is one of the most used ones and will be considered
here as the reference for comparison, because it recapitulates many aspects
of other models.
The accuracy of this and other models in reproducing "perfect" GB radii,
is still low, as shown below. Following a similar approach, but targeting
1/r3GB instead of 1/rGB , a significant improvement was achieved by
the AR6 method by Onufriev and co-workers at a similar computational
load (Aguilar et al., 2010). Corrections to a similar model resulted in the
successful GB-Neck2 method (Mongan et al., 2007c).
A more heuristic approach, named FACTS and implemented in the
simulation program CHARMM (Brooks et al., 2009), incorporates both
the idea of volume occupation by surrounding atoms and the asymmetry
of the distribution (Haberthur and Caflisch, 2008). The latter approach
reaches higher accuracy with limited amount of computation compared to
the OBC or similar analytical approaches.
The search for fast and accurate methods to compute GB radii (and possibly
their derivatives with respect to atomic positions) is however still an open
issue.
Recently, machine learning approaches have been used to construct
multibody coarse grained potentials (Zhang et al., 2018; Wang et al., 2019)
or to learn atomistic force-fields (Behler, 2016). With their flexibility
machine learning methods are expected to achieve the highest accuracy
given a large body of training data. The GB implicit solvent model is
a peculiar form of coarse graining and therefore the above works share
common aspects with the approach adopted here. The main difference is
that here the solute is still described by a high quality force field whereas
only the solvation part is modeled, adopting the widely used GB functional
form for solvation free energy.
Our aim is to obtain a method to compute the GB radii from the
conformation that is faster and more accurate than available methods, a
task much less complex (and perhaps less accurate as well) than learning
conformation dependent effective potentials.
Here we use linear models and neural networks, as alternative functional
forms, to compute GB radii from histograms of distances and we show
that better accuracy can be obtained with lesser or comparable amount of
computation with respect to current widely employed methods.

2 Methods

Generalized Born radii

The basis for most approaches to computation of GB radii is the Coulomb
field approximation (CFA) which assumes that the electric displacement

~D may be approximated by the Coulombic field ~E as if the medium
were homogeneous (Bashford and Case, 2000; Onufriev and Case, 2019;
Bardhan, 2008):

~D = ε0εr ~E =
1

4π

q

r2
(1)

where q is the source charge, ε0 is the vacuum permittivity, εr is the
relative dielectric constant of the solvent and r is the distance from the
source charge where the ~D is computed.
Let us consider the single charge qi of the atom iwith van der Waals radius
ai embedded in a molecular volume Vin. The energy U of the system is
computed by integrating the electrostatic energy density:

U =
1

2

∫
V

~E · ~DdV (2)

The solvation energy ∆Gi of point charge qi embedded in a molecular
structure is computed therefore as the difference between the self energy
in vacuum and in solvent in the CFA approximation which leads to the
integral over the solvent volume Vext:

∆Gi =
ε0

2

(
1−

1

εr

)
q2i

(4πε0)2

∫
Vext

1

r4
dV (3)

This solvation energy is equated with the known solvation energy of the
same charge embedded at the center of a sphere of radius αi:

∆Gi =

(
1−

1

εr

)
1

8πε0

q2i
αi

(4)

thus defining αi as a purely geometric quantity:

1

αi
=

1

4π

∫
Vext

1

r4
dV (5)

It is further convenient to consider the integral over the whole volume
external to the isolated atom, i.e. from infinite to its van der Waals radius:

1

ai
=

1

4π

∫
Vr>ai

1

r4
dV (6)

and rewrite equation 5 as:

1

αi
=

1

ai
−

1

4π

∫
Vin,r>ai

1

r4
dV (7)

Most approaches, save for those explicitly integrating over the volume or
equivalently, using the divergence theorem, over the surface (Ghosh et al.,
1998; Fogolari et al., 2012, 2013), replace the integral over the molecular
volume surrounding atom i by a discrete sum over atoms’ contributions
(Still et al., 1990; Qiu et al., 1997; Hawkins et al., 1995, 1996; Mongan
et al., 2007b; Tjong and Zhou, 2007):

1

αi
=

1

ai
−
∑
j

f(ai, aj , rij) (8)

Following Hawkins, Cramer and Truhlar (Hawkins et al., 1995, 1996),
the atomic radii are modified and scaled in the terms entering the sum.
Furthermore the method of Onufriev, Bashford and Case subjects the
summation to processing in order to smooth the dependence of the results
on the summation (Onufriev et al., 2004). The function in eq. 8 is
parametrized as to avoid double counting due to overlap of atoms.

More accurate approaches estimate
(

1
αi

)3
rather than 1

αi
(Grycuk, 2003;

Mongan et al., 2007a; Tjong and Zhou, 2007; Fogolari et al., 2012) based
on the exact solutions of the Poisson equation for a spherical boundary in
the limit of infinite external dielectric constant, rather than on the Coulomb
Field approximation.
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Reference Generalized Born radii

For comparison the Onufriev, Bashford and Case (OBC) GB radii
computation was used with the formulae and parameters reported in the
NAMD program (Kale et al., 1999) user guide and in the program files.
This implementation might be slightly different from that reported in the
original paper (Onufriev et al., 2004).
Rather than comparing the "perfect" GB radii directly with the computed
GB radii, the inverse of the Generalized Born radii were considered as
the target to assess the quality of the estimation provided by the different
methods, because proportional to self-solvation energy. It has been shown
before that the "perfect" GB radii may be computed very accurately by a
surface integral approach (Fogolari et al., 2012, 2013; Izadi et al., 2018).
To this end the molecular surface was generated using the program MSMS
(Sanner et al., 1996), read in a customized version of the program Bluues
and GBR6 radii were calculated by numerical integration (Fogolari et al.,
2012).
The set of radii used was the Bondi radii set (Bondi, 1964) as implemented
in the program NAMD (Kale et al., 1999) which assigns radii 1.2, 1.5,
1.55, 1.70, 1.8 Å to H, O, N, C and S, respectively. Polar hydrogens were
assigned a radius of 1.3 Å. With minor differences the same set of radii was
implemented in versions 4 and 5 of the GROMACS simulation software
package (Berendsen et al., 1995).
The top500H (Lovell et al., 2003) curated dataset, which includes 500
non redundant protein structures obtained by X-ray crystallography with
resolution better than 1.8 Å and with few deviations from ideal geometry,
was used and overall 1.7 million "perfect" GB radii were calculated.

Generalized Born energies and forces

Once GB radii have been computed, it is possible to compute system
energies, that include solvation energies, using pairwise summation. In
the following, to make notation less clumsy, we indicate GB radii rGB,i
by αi.

∆G = U + ∆Gsolv =
1

4πε0

∑
i>j

qiqj

rij
(9)

−
1

8πε0
(1−

1

εout
)
∑
i,j

qiqj√
r2ij + αiαj exp

−r2
ij

4αiαj

(10)

The equation reproduces the correct limiting behaviour for rGB radii in
the very large and very small distance regimes and provides a smooth
transition between the two regimes.
The GB force acting on atom j is minus the derivative of the solvation
energy with respect to the position of atom j:

~Fj = −∇~rj∆G({αk(~rl)}, {~rl}) = (11)

= −∇~rj∆G({αk}, {~rl}) + (12)

−
∑
k

∂∆G({αk}, {~rl})
∂αk

∇~rjαk({~rl}) (13)

where the explicit and implicit dependence on atomic position is indicated.
The derivative of the Born radii are further obtained by the chain rule:

∇~rjαk =
∂αk

rkj
× ~∇~rj rkj (14)

Learning Generalized Born radii from examples

Here, we represent the environment of each atom through descriptors and
we explore the possibility of learning the relationship of these with the
Generalized Born radius of the same atom. For the sake of clarity we refer
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Fig. 1. An example of the input vector for a carbon atom. The five 80-bin histograms
corresponding to H, O, N, C, S neighbours counts at distances less than 16 Å are indicated
in the plot.

to the atom for which the GB radius is computed as the screened atom,
whereas all neighbouring atoms are referred to as the screening atoms.
For each screened atom we consider all neighbour screening atoms within
16.0 Å (larger than typical cutoffs used in simulation). We divide all
screening atoms according to element and compute for each element (i.e.
H, N, C, O or S) the histogram of distances, i.e. the counts of screening
atoms occurring in 0.2 Å-wide bins from 0 to 16.0 Å.
For each atom therefore five (one for each element) 80-bin histograms
are computed. Since the effect of screening atoms depends also on the
element of the reference atom, we consider separately each element, so
that for each element we use 400 predictive variables.
In summary for each atom a categorical variable, to indicate the element of
the atom, and 400 counts of neighbouring atoms are the input to predict the
inverse of the Generalized Born radius. An example of the input vector for a
carbon atom is reported in Figure 1. As can be seen the vector is partitioned
in five 80-components sections relative to neighbours of a given atomic
element. Each component represents a distance of the screening atoms
from the screened atom. Thus, components 1 to 80 represents the counts
of screening hydrogens at distances from 0 to 16 Å from the screened
atom, components 81 to 160 represents the counts of screening oxygens
at distances from 0 to 16 Å from the screened atom, etc... The number
of counts in all sections increases in principle up to the boundary of the
protein with the square of the corresponding distances.
The section relative to sulphur atoms is mostly poorly populated due to
the low number of sulphur atoms in protens.
As mentioned above, we chose the inverse of the GB radius as the target
because self-solvation energies are porportional to this quantity.

Generalized Born radii and forces by multilinear regression

A linear model is built to predict the inverse of the "perfect" GB radii.
The inverse of the "perfect" GB radius is fitted by multilinear regression
on the components of the aggregate histogram of the neighbouring atoms
according to atom element:

1

αk
= c

e(k)
0 +

∑
ij

c
e(k),e(j)
i ni,e(j) (15)
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where e(k) is the element of screened atom k, and ni,e(j) is the number
of screening atoms of element e(j) in the distance bin i.
The coefficients ce(k),e(j)i may be understood as the discretization of the
function of the distance dkj representing the linear effect of element e(j)
on the inverse of the Generalized Born radius of element e(k).
In principle the coefficients should represent the effective volume of atoms
scaled by the inverse of the fourth power of the distance. In practice fitting
the strong correlations in particular at short distances leads also to negative
coefficients. Similarly the intercept of the regression should in principle be
the inverse of the van der Waals atomic radius, but in practice as discussed
in the results section is definitely smaller.
Several count values, e.g. those at very short distances, are zero and
therefore their coefficients are not defined. These values were linearly
interpolated from other coefficients using the package imputeTS (Moritz
and Bartz-Beielstein, 2017).
The number of operations that must be performed for each GB radius to
be predicted from the histogram of distances is 799 (400 multiplications
and 399 sums). Due to the linearity of the model the GB radius may
be computed directly from the distances with 3 operations (modulo,
multiplication and sum) for each screening atom.
Generalized Born forces are obtained from equations 13 and 14. Since the
inverse of the Generalized Born radii is a linear combination of counts in
bin distances, the derivative of the Generalized Born radii is approximated
by a linear combination of counts in bin distances using the chain rule:

∂αk

∂rkj
= −αk2

∂ 1
αk

∂rkj
(16)

= −αk2
∑
i

d
e(k),e(j)
i δi,bin(rkj) (17)

where bin(rkj) is the index of the bin of distance rkj .

Consistent with the intepretation of coefficients c
e(k),e(j)
i as the

discretization of a continuous function, the coefficients de(k),e(j)i are
defined as:

d
e(k),e(j)
1 = 0 (18)

d
e(k),e(j)
i =

c
e(k),e(j)
i+1 − ce(k),e(j)i−1

2∆d
i = 2, ..., N − 1 (19)

d
e(k),e(j)
N = 0 (20)

where ∆d is the distance bin width, and N is the number of bins. Setting
the first and last coefficients to zero has no consequence because the first
bins are never populated due to steric repulsion of atoms, and the last ones
are close to cutoff distance where effects are negligible.

Implementation in Molecular Dynamics software

A preliminary test of the methods described here was performed within
the software GROMACS v. 5.1.2 (Van Der Spoel et al., 2005), by
suitable modifications to data structures related to GB functions and by
modifications to the routines that implement GB radii and their derivatives
calculation. No attempt was done at this stage to parallelize the code. Since
the code is rather complex, checks were performed by printing the GB radii
and solvation energies and forces (by difference with vacuum computation
using the same structures) both for the linear model and for the reference
OBC model, in order to verify that no artifacts were introduced by the
modifications to the code. The typical correlation between OBC and linear
model solvation forces was always found to be larger than 0.8.
The purpose of this implementation is to test in practice running time and
overall accuracy.
We have simulated the protein barnase (1727 atoms) for 50 ns at 310 K

using the OBC and the linear GB models. All bonds were restrained by
the LINCS algorithm, a cutoff of 1.6 nm was used for all non-bonded
terms. GB radii were recalculated every 10 steps. The simulations used a
stochastic dynamics integrator at 310 K with time constant 0.1 ps. Using
larger time constants resulted in occasional LINCS failures.
The accuracy of the simulation was judged by the time evolution of the
backbone RMSD from the starting minimized structure. This is a sensitive
parameter which is able to detect excessive restraining on structures, or
inaccuracies in forces.
The efficiency of the linear and OBC GB models was assessed on short
(50 ps) MD runs where GB radii and derivatives were recalculated at each
step, in order to exclude that the differences could be due to the combined
effect of conformational changes and cut-offs.

Generalized Born radii using neural networks

A neural network model has been implemented to predict the inverse of the
"perfect" GB radii. The proposed network consists of five hidden layers
with linear activation function REctified Linear Unit (ReLU) (Nair and
Hinton, 2010) for each layer and one hidden layer (the last one) with
Sigmoid activation function (Sibi et al., 2013). Each layer consists of 32
neurons except the last layer that has only one neuron to predict the target
value. A scheme of the network is shown in Figure 2.
The network was trained using the same input as for the multilinear
regression. In practice there are five data sets, one for each screened
element H, C, N, S, O respectively. The environment of each screened
atom is represented by a 400-element vector, containing five 80-bin
histograms corresponding to each screening element H, O, N, C, S with
neighbors counts at distances less than 16 Å. The input vector for a
screened carbon atom is shown in Figure 1. Thus, five identical neural
networks (one for each screened element) are trained with their relative
data sets. Each input consists of batch of N vectors of size 400. For each
set we train and test the same proposed model. We fit a neural network
model for each element and evaluate the model on the test data set for
each element. The number of training examples that is utilized in one
iteration in the model is 512. We used as optimization algorithm the
Root Mean Square Propagation (RMSprop) (Hinton et al., 2012)(URL:
http://www.cs.toronto.edu/ hinton/coursera/lecture6/lec6.pdf).

Fig. 2. The schematization of the proposed neural network.

The neural network model for each element, built to predict the inverse
of the GB radius from the counts of neighbors, reflects the influence of
each other atom on the atom to be predicted. The number of operations
performed for each prediction is 35840. Most operations are elementary
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operations (multiplication, sum, max, exponential, division).
We tried many different models that are different in number of layers,
number of batch size, optimization algorithm and activation function. We
compared their results until we got the best result for the architecture
described above. To deal to the overfitting issue we adopt in our approach
the Early stopping strategy (Prechelt, 1998). In fact, this strategy provides
an effective way to evaluate how many epochs can be run before the neural
network model begins to overfit. In particular, it compares at every epoch
the neural network performance in both training and valuation sets and the
learning process in order to preserve the generalization of the network.

Test set

The accuracy of the predictions are tested on the non-redundant,
representative set of proteins used by Tjong and Zhou (Tjong and Zhou,
2007) after exclusion of the proteins similar to those used for fitting the
multilinear model. The criterion for accepting the structure in the testing
set was that the expectation value of the alignment score of its sequence
with the sequences of the training set proteins was larger than 0.05. The
resulting test set includes 32407 atoms to be predicted.

Results and discussion

Generalized Born radii by multilinear regression

The linear model built to predict the inverse of the GB radius from the
counts of neighbours reflects the influence of each other atom on the atom
to be predicted. The self contribution which should be equal to the inverse
of the van der Waals radius is coded in the intercept of the model which
corresponds to radii smaller than expected, because of extensive overlap
of atoms.
Thus, the self screening radius, which is obtained from the intercepts of
the linear model for each element, is 1.04 Å for H, 1.41 Å for O, 1.34
Å for N, 1.42 Å for C and 1.27 Å for S.
To compare predictions with reference "perfect" GB radii, all predicted
GB radii larger than 16 Å were reset to 16 Å and those smaller than van
der Waals radii were reset to van der Waals radii.
The coefficients for the five screening elements H, O, N, C , S (for each
screened atom) are reported in Figure 3. Although the general behaviour
is as expected, i.e. the coefficients are mostly negative and decrease fastly
with the distance corresponding to the bins, there are also deviations. There
are occasional short interatomic distances in the input vectors which result
in coefficients based on few if not just one count. These will have little
consequences because these cases, due to inaccuracies in the determined
structure, in the added hydrogens or to the natural variance of bond lengths
and interatomic distances, are extremely rare. There are, however, also
positive values which are determined by a large number of counts, which
reflect the way the linear model fits the extensive correlation of the effect
of neighbouring atoms. This is well seen for the bins corresponding to
short distances. With increasing distances the number of counts increases
and all effects are averaged.
It is reassuring that the coefficients for larger distances are well fitted by the
fourth inverse power of the distance, showing that the approach recovers
the expected screening dependence on the distance.
The correlation among coefficients for different elements (both screened
and screening) is in general poor, but it greatly increases for screening
atoms when only larger distances (say greater than 6.0 Å) are taken into
consideration.
The results are reported in Table 1. The correlation coefficients are for all
elements over 0.90, and the root mean square error (RMSE) is less than
0.1 for all elements. These figures appear significantly better than for the
reference method (Table 2). The implementation in NAMD might slightly
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Fig. 3. Coefficients for the five 80-bin histograms corresponding to predicted H, O, N, C and
S radii (on each row). The coefficients refer, in groups of 80 coefficients, to neighbouring
H, O, N, C and S atoms.

Table 1. Summary of the linear model

n. train cc train RMSE train n. test cc test RMSE test

H 837537 0.93 0.067 16031 0.94 0.093
O 162615 0.94 0.051 3246 0.95 0.059
N 139732 0.94 0.037 2812 0.95 0.046
C 545894 0.94 0.036 10252 0.94 0.046
S 3976 0.94 0.039 66 0.91 0.054

all 1689754 0.94 0.055 32407 0.94 0.074

Correlation coefficients (cc) and root mean square error (RMSE) are
computed on the inverse of the Generalized Born radii

differ from the original paper, so the performance of the original method
could be slightly better than the one reported here.
The results are plotted in Figure 4 where the quality of the predicted values
may be appreciated. It is apparent that for all elements there is a region, just
below the inverse of the van der Waal radius where the predicted values
tend to be lower (i.e. the predicted radii are larger) than the "perfect"
values. This is attributable to crevices in the molecular structures where
the binning is not able to catch the details of the histogrammed distribution
of distances between atoms. This was confirmed visually on few tens of
the largest deviations between predictions and reference values.
Another apparent feature in Figure 4 is that estimated inverse GB radii
tend to be larger than the inverse "perfect" GB radii, at large values of
the latters. This may be attributed to the CFA approximation, indeed this
feature is absent for the GBR6 estimation of GB radii.

Generalized Born radii by neural networks

The neural network model, used to predict the inverse of the GB radius from
the counts of neighbors, builds all correlations due to chemical structure in
the parameters of the network and goes obviously beyond the linear model
employed in the previous subsection.
The complexity of the connections in the network (Figure 2) should be in
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Fig. 4. The inverse of the GB radii predicted using multilinear regression versus the inverse
of "perfect" GB radii. The predictions for different elements are grouped together in the top
left panel and shown ungrouped in the other panels, as indicated by the element symbol in
each panel.

Table 2. Summary of the results
obtained by the OBC model

n. test cc test RMSE test

H 16031 0.83 0.146
O 3246 0.94 0.096
N 2812 0.88 0.057
C 10252 0.75 0.076
S 66 0.86 0.126

all 32407 0.80 0.117

Correlation coefficients (cc) and
root mean square error (RMSE)
are computed on the inverse of the
Generalized Born radii

principle able to describe accurately relations of the input data with the
quantities to be predicted. The architecture of the network was chosen
by trial for optimal performance. This should provide a limit to the
predictability of the output based on the information provided by the input.
The results are reported in Table 3. As expected, the neural network
outperforms the linear model both in terms of correlation coefficients and
RMSE with respect to the true values. The better performance of the neural
network is apparent when the inverse of the GB radii are plotted versus
the inverse of the "perfect" GB radii (Figure 5). For both the multilinear
regression and the neural network models the RMSE for test vs. train
dataset is much larger for hydrogen atoms. Largest errors are found close
to surface crevices. Since in both methods it is the mean square errors which
is minimized, parameters are tuned as to reduce large errors, adapting in
a sense the parameters to the training set. Being more flexible, neural
networks largely improve predictions. The possibility that this is due to
overfitting is ruled out because this is observed for the test set of proteins
which are completely independent of those used for training the network.
Hydrogen atoms, endowed with the smaller radii, are most sensitive to
the problems at crevices. Using larger van der Waals radii greatly hampers
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Fig. 5. The inverse of the GB radii predicted using the neural network versus the inverse of
"perfect" GB radii. The predictions for different elements are grouped together in the top
left panel and shown ungrouped in the other panels, as indicated by the element symbol in
each panel.

this problem resulting in smaller errors. This is observed for instance when
testing the multinear regression model with the radii set used by FACTS
which results in lower errors. Here we focused on the Bondi radii set which
is widely used and, coupled with few modifications with the GB-Neck2
model, resulted in succesful folding of small proteins (Nguyen et al., 2014).
It is worth noting that there are also sets of radii optimized to reproduce
solvation forces which are definitely larger than those of the Bondi sets of
radii (Swanson et al., 2005, 2007).

Table 3. Summary of the neural network model

n. train cc train RMSE train n. test cc test RMSE test

H 837537 0.97 0.047 16031 0.97 0.078
O 162615 0.97 0.042 3246 0.97 0.045
N 139732 0.96 0.039 2812 0.96 0.038
C 545894 0.97 0.038 10252 0.97 0.034
S 3976 0.92 0.058 66 0.92 0.047

all 1689754 0.97 0.044 32407 0.97 0.060

Correlation coefficients (cc) and root mean square error (RMSE) are
computed on the inverse of the Generalized Born radii using neural
network model

Accuracy and efficiency for MD simulations

The computation of GB radii and forces has been implemented in one of
the latest versions of GROMACS still maintaining the feature of GBSA
simulations.
The first concern was that the computed forces were not suffering from
the discretization of distances in finite intervals. To this end we performed
the same tests used to asses the accuracy of forces according to various
GB models (Fogolari et al., 2015), and compared computed forces with
the reference Poisson-Boltzmann forces.
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The mean absolute error on each component of the solvation force by the
linear GB model for 32407 atoms in the 18 protein structures of the Tjong
and Zhou test set (non-dependent on the training set) is 0.73 kcal/(mol
Å2) vs. 0.78 kcal/(mol Å2) of the reference OBC GB model. As we
noted previously (Fogolari et al., 2015) the GB OBC model estimation
of solvation forces is fairly accurate.
The computation time in the absence of cutoff scales exactly quadratically
with the number of atoms of the system.
In order to have a useful assessment of the linear GB model efficiency for
MD simulations, we performed first a short MD simulation of the protein
barnase (110 residues) where GB radii and derivatives were recalculated
at each MD step. We performed also a reference vacuum simulation. The
simulation is short (50 ps) so that the simulated structure is approximately
the same for all three simulations, because the conformation impacts the
computational time. The computational time due to the GB part of the
simulation is obtained by taking the difference of the CPU time of the GB
simulations and subtracting the CPU time of the vacuum simulation. In this
way we obtain the relative efficiency of the linear GB model with respect
to the GB OBC model, as far as GB radii and derivatives computation
is concerned, which is 8.1. The linear GB model in this setting takes 2.3
times the time of a vacuum simulation.
Since recalculation of GB radii and derivatives is typically performed only
every 20fs (in our setting every 10 2fs steps), we performed the same
simulation under these conditions.
The relative efficiency of the linear GB model over the GB OBC model
was reduced, as expected, to just 1.9, whereas the running time of the
linear model compared to the vacuum running time is almost the same, i.e.
2.2. The latter fact confirms that the linear model is extremely efficient.
It must be noted however that running time includes, for all GB algorithms,
computations which do not involve calculation of GB radii and their
derivatives. It is these computations that slow simulation roughly by a
factor 2 compared to vacuum calculations (which is still more efficient
than simulating surrounding waters for specific systems).
As a last test of accuracy we simulated the protein barnase for 50 ns with
the linear GB model and the GB OBC model. We compared the RMSD
of the protein from the starting energy minimized structure. Inaccuracies
in estimated forces would likely result in large deviations of the structure
and/or in absence of fluctuations. The results reported in Figure 6 show the
the linear GB model is able to produce the typical fluctuations observed in
implicit solvent simulations and maintain the structure close to the native
starting one.

3 Conclusions
Here we presented the application of multilinear regression and neural
networks model for computation of Generalized Born radii. The input for
both models consists in a categorical variable (the element of the atom to
be predicted) and a five 80-component vectors (one for each element H,
C, N, O and S) with counts of neighbours.
Multilinear regression improves significantly the accuracy of the
computation, with respect to "perfect" GB radii, in comparison with one of
the currently most used models. At the expenses of more computation, the
neural network is able to further improving the performance highlighting
perhaps the limits attainable with a simple input like the one chosen.
The multilinear regression model is suited also for force calculation, as
the derivatives of the GB radii can be easily computed by finite differences
(and interpolation), whereas the non linearity of the relation between input
and output prevents such calculation for the neural network model.
We have compared the forces computed in this way with the reference
Poisson-Boltzmann forces showing that the accuracy is slightly better than
one of the most used methods.
We have tested GB radii and their derivative calculation using the multinear
regression by an ad hoc implementation in one of the most popular MD
simulation programs. Based on the simulation parameters the efficiency is
2 to 8 times better than the reference GB method.
Overall the two models described here, which are available as
supplementary material, provide an alternative to approaches based on
the physics of solvation, optimized to reproduce accurately GB radii, and
can thus be used for implementing fast calculation of GB radii and their
derivatives and provide a useful reference for other alternative methods.
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