
A Neural Turing Machine-based approach to
Remaining Useful Life Estimation

Alex Falcon∗†, Giovanni D’Agostino†, Giuseppe Serra†, Giorgio Brajnik†, Carlo Tasso†
∗Fondazione Bruno Kessler, Trento, Italy
†Artificial Intelligence Laboratory

Università degli Studi di Udine, Italy
Email: {falcon.alex, dagostino.giovanni}@spes.uniud.it
{giuseppe.serra, giorgio.brajnik, carlo.tasso}@uniud.it

Abstract—Estimating the Remaining Useful Life of a me-
chanical device is one of the most important problems in
the Prognostics and Health Management field. Being able to
reliably estimate such value can lead to an improvement of the
maintenance scheduling and a reduction of the costs associated
with it. Given the availability of high quality sensors able to
measure several aspects of the components, it is possible to
gather a huge amount of data which can be used to tune precise
data-driven models. Deep learning approaches, especially those
based on Long-Short Term Memory networks, achieved great
results recently and thus seem to be capable of effectively dealing
with the problem. A recent advancement in neural network
architectures, which yielded noticeable improvements in several
different fields, consists in the usage of an external memory which
allows the model to store inferred fragments of knowledge that
can be later accessed and manipulated. To further improve the
precision obtained thus far, in this paper we propose a novel
way to address the Remaining Useful Life estimation problem
by giving an LSTM-based model the ability to interact with a
content-based memory addressing system. To demonstrate the
improvements obtainable by this model, we successfully used it
to estimate the remaining useful life of a turbofan engine using
a benchmark dataset published by NASA. Finally, we present an
exhaustive comparison to several approaches in the literature.

I. INTRODUCTION

The estimation of the Remaining Useful Life (RUL) of
a mechanical device is one of the key problems studied
in the field of Prognostics and Health Management (PHM)
[1]. In fact, knowing in advance if and when a machine is
going to have a failure is fundamental to plan in advance its
maintenance, allowing the users of such machine to benefit
the most from its working lifetime and limiting the losses
caused by the unexpected failure of the machine and the need
of repairing or replacing it [2, 3]. The typical methods used
to estimate the RUL of mechanical devices belong to three
categories: physics-based approaches (also called model-based
approaches), data-driven approaches, and hybrid approaches
[4].

Physics-based approaches involve the creation of a model
that simulates the physical behaviour of the piece of equipment
analyzed in order to predict how and when it will have a

failure. Even though physics-based approaches do not require
access to a large amount of data in order to estimate the RUL
of a mechanical device, the difficulty, the time, and the costs
involved in developing an accurate physical model to simulate
the behaviour of the analyzed device, make the model-based
approaches unfeasible when such equipment is complex [1,
5].

Data-driven approaches on the other hand typically use pat-
tern recognition and machine learning to make an estimation of
the RUL of the mechanical device that is being analyzed, thus
requiring a large amount of data used to train a mathematical
model from which the RUL can be predicted [6, 2]. In the last
years, thanks to the advancements made in the field of deep
learning, data-driven approaches based on the usage of neural
networks have experienced an increasing popularity. Deep
learning models based on Convolutional Neural Networks
(CNN), Long Short-Term Memory networks (LSTM), and
Recurrent Neural Networks (RNN) have in fact been used in
the latest years to estimate the remaining useful life [7, 1, 8].

What are the previous approaches missing or what are
they doing “wrong”? For RUL estimation problems, CNN-
based approaches do not seem to be an appropriate choice,
because they do not exploit the sequential nature of the data.
RNN-based approaches on the other hand do exploit such
nature, yet they have troubles dealing with the really long
time series which need to be dealt with due to vanishing
gradients. LSTM-based approaches seem to fit better, thanks
to their inner capability of dealing with long sequences; yet,
they are heavily based on hidden states, and they rely on the
fact that such a hidden state can support learning of the most
informative characteristics of the data. We thought of boosting
the mnemonic capabilities of the LSTM networks through the
use of an external memory support, much like in a personal
computer the utilization of a RAM boosts the capabilities
of a CPU (otherwise limited by its own restricted caching
storage). The intuition behind such idea is that enriching
LSTM networks with an external memory support, where to
store inferred fragments of knowledge, can improve the ability
of the system to focus on relevant characteristics of the data.
To test such a hypothesis, we decided to tackle the problem of
RUL estimation through a novel deep learning approach based978-1-7281-6286-7/20/$31.00 c©2020 IEEE

2

on the exploitation of a Neural Turing Machine combined with
LSTM networks.

Neural Turing Machines (NTM) were introduced by Graves
et al. as a working memory system designed to solve tasks that
require the application of approximate rules to data that are
quickly bound to memory slots (the so-called “rapidly-created
variables”) [9]. NTMs can be seen as a way to give neural
networks the ability to interact with a memory, similarly to
what happens in traditional computers with the random-access
memory. Since their introduction, NTMs have been used with
success in research fields such as Video Question Answering
(VQA) [10] and for the sequential learning of human mobility
patterns [11]. We claim that giving the model the ability to
learn what pieces of knowledge to store in an external memory
(the NTM) and when to retrieve them, improves the model
accuracy in estimating the RUL of a given machine at a given
time.

Our major contributions can be summarized as follows:
– We propose a novel neural network architecture for

the RUL estimation based on the usage of an external
memory module. Our hypothesis is that the model can
profit from using another memory where processed
hidden features can be selectively stored, manipulated,
and retrieved. To evaluate our hypothesis, we present
an exhaustive comparison with several architectures
available in the literature.

– We show that our model achieves a low estimation error
with respect to the other single-stream architectures,
while still being comparable to recent dual-stream ar-
chitectures.

The rest of the paper is organized as follows: Section II
presents the RUL estimation problem setting and the tools used
in our approach. Section III describes our approach, while in
Section IV are illustrated the results of our experiments on
a benchmark dataset. Section V concludes the paper with a
discussion of the results and future work.

II. RELATED WORK

A well known benchmark dataset for the RUL estimation
problem is the C-MAPSS dataset [12], which is a dataset
published by NASA that consists of several time series of
sensor measurements of different turbofan engines. A first
machine learning approach to the problem was given by
Heimes in [13], where the author used a Multilayer Perceptron
and a RNN.

In [7], Babu et al. proposed a deep learning approach
consisting in two CNN layers alternated with pooling layers,
followed by a Feedforward network used to estimate the RUL
value. In a more recent work, [8] follows a similar approach
using a deeper network with more CNN layers.

Given the sequential nature of the data, an architecture based
on LSTM networks was proposed by Zheng et al. in [1]. To an-
alyze the time series in both directions, [14] and [15] proposed
to use a Bidirectional LSTM-based network, achieving further
improvements with respect to the previous works. Zhang et
al. in [16] proposed to use a Deep Belief Networks (DBN)

ensemble method with two conflicting objectives (accuracy
and diversity), where evolutionary algorithms are integrated
with the traditional training algorithms to first train multiple
DBNs and then combine them. Ellefsen et al. in [17] proposed
to use an architecture composed of Restricted Boltzmann
Machines, LSTM, and Feedforward networks, while following
a semi-supervised training technique. Moreover, the authors
used genetic algorithms to select the best hyper-parameters
(such as the activation functions in the network, and the
number of neurons in the hidden layers), showing that it is
a valid approach to effectively tune such hyper-parameters.

Whereas the above mentioned papers use either an LSTM-
based or a CNN-based network, another type of approach in-
volves the use of multiple streams. Double stream approaches
were tested on the C-MAPSS dataset by Li et al. in [4], and by
Al-Dulaimi et al. in [18]. In these architectures, the available
time series are usually cut time-wise in order to obtain shorter,
fixed-size windows, which are later fed to both an LSTM-
based network on one stream, and a CNN-based network on
the other stream. In particular, the network used in [4] adopts a
single LSTM on one stream, a CNN followed by a pooling and
a flatten layer on the other stream, then sums element-wise the
feature vectors, feeding the result to another LSTM followed
by a Feedforward layer. On the other hand, the network used
in [18] adopts three stacked LSTM layers on one stream,
two stacked CNN plus pooling layers followed by a CNN
plus flattening layer on the other stream, followed by three
Feedforward layers which act as a fusion layer. Although the
double-stream approaches obtain good results, the magnitude
of the improvements introduced with respect to the network
complexity of such architectures are not large enough to allow
us to ignore the validity of single-stream architectures.

III. OUR APPROACH

A. Overview of the approach

A graphical overview of the proposed approach can be
seen in Figure 1. First of all, as described in the previous
subsections, the raw input time series are preprocessed thus
obtaining a set of shorter windowed time series. Each of these
windows is then given in input to the two stacked LSTM
networks, obtaining a sequence of extracted features. These
features are then concatenated by the NTM to a new set of
updated features computed by the NTM itself. The resulting
object is then mapped to estimated RUL values by two stacked
Feedforward layers.

B. The Proposed Model

The data typically considered in the Prognostics and Health
Management field is composed of long time series measure-
ments of sensors data. To model temporally-related sequential
data and the evolution of its intrinsic characteristics, Recurrent
Neural Networks have shown good performance in extrap-
olating hidden patterns in data. Due to the wide extent of
the sequences considered in the RUL estimation problem, the
issues of exploding and vanishing gradients need to be paid
attention to [19]. In particular, to deal with such issues a

3

t

h2

n

2

1
h1

h1

n

2

1

cat

Predicted RUL

fe
a
tu
re

window_time

h2

h2

h1

LSTM 1 cell #n

1

LSTM 1 cell #1

LSTM 1 cell #2

LSTM 2 cell #n

LSTM 2 cell #1

LSTM 2 cell #2

NTM

Feed Forward #1Feed Forward #2

h2

1

h2

2

...

h2
n

...

l

Fig. 1. A graphical overview of our approach. The time series are first
cut into shorter windows, then given as input to the network. Following the
two stacked LSTM networks, the extracted features are concatenated to the
augmented features computed by the NTM module. At the end, two stacked
Feedforward networks are used to map the extracted features to a sequence
of RUL values.

type of RNN called Long Short-Term Memory Networks [20]
was introduced. In this particular type of RNN, the flow of
information inside and between the cells of an LSTM network
at time t is controlled by three gates: the input gate it, the
output gate ot, and the forget gate ft. The input gate decides
whether to update the state of the LSTM by using the current
input xt, the forget gate decides whether to keep or forget the
information represented in the previous state of the LSTM
ct−1, and the output gate decides whether to pass or not
the updated hidden state ht to the next cell of the network.
The new state of the LSTM ct is calculated by summing the
previous state of the LSTM ct−1 with the new gated input (see
Eq.4). The interactions between the gates, the cell states, and
the hidden states of the LSTM networks are illustrated in Fig.
2. The LSTM equations are the following:

it = σ(Wixt +Hiht−1 + bi) (1)

ot = σ(Woxt +Hoht−1 + bo) (2)

ft = σ(Wfxt +Hfht−1 + bf) (3)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt +Hcht−1 + bc) (4)

ht = ot ◦ tanh(ct) (5)

where W∗, H∗, and b∗ are respectively the trainable weights
and biases for the input, output, forget gates and for updating

Fig. 2. The flow of information inside an LSTM cell at time t. σ denotes
the sigmoid function, xt the input vector, ct−1 the previous cell state and
ht−1 the previous hidden state.

the cell state. ht−1 and ht are respectively the hidden layer
activation of the previous and of the current iteration, while
ct−1 and ct are respectively the cell states of the previous
and of the current cell of the network. xt denotes the current
input, while ft, ot and it are the gate activations. ◦ represents
the element-wise multiplication operator (Hadamard product).
Finally, σ represents the sigmoid activation function.

Given the sequential nature and the considerable length of
the time series data at hand, we opted for an LSTM-based
network. Moreover, we considered the Feedforward networks
to be the best solution to learn a mapping from the sequence
of hidden features extracted by the LSTM network to RUL
values. In particular, we decided to use as a starting point a
network composed of two stacked LSTM networks followed
by two stacked Feedforward layers, as this was shown to be
a suitable solution in previous works [1] and it was shown to
have better performance than a network composed of a single
LSTM followed by a single Feedforward network [21].

To further boost the memory capabilities of our network, we
are coupling the LSTM network with an NTM. We claim that
the availability of an external memory where the processed
hidden features can be selectively stored, manipulated, and
retrieved can help the model to better understand the hidden
patterns in the data and thus improve the capabilities of the
subsequent direct RUL mapping module. The external memory
used in our approach is based on the one implemented by Fan
et al. in [10], which was customized to fit its architecture
to the RUL estimation problem. The Neural Turing Machine
is constituted by a memory module and a controller unit,
where the memory module is made up of memory slots
M = [m1,m2, ...,mS] and a memory hidden state hm, while
the controller unit consists of a Feedforward network; the
inputs to the memory are represented by the vector om. The
external memory supports three types of operations: write
operations, read operations, and hidden state updates.

1) Write Operation: The content to be written into the
memory at time t is represented by the content vector cmt
and is computed as follows:

cmt = σ(Wm
oc o

m
t +Wm

hch
m
t−1 + bmc) (6)

4

where omt represents the current input vector, hmt−1 the pre-
vious hidden state. Wm

oc and Wm
hc represent the trainable

weights, and bmc represents the bias. The weights to be
written into the memory slots of the NTM are defined as
αt = {αt,1...αt,i...αt,S} such that:

amt = v>a tanh(W
m
cac

m
t +Wm

hah
m
t−1 + bma) (7)

and
αt,i =

exp(at,i)∑S
j=1 exp(at,j)

for i = 1, ..., S (8)

satisfying
∑

i αt,i = 1. Wm
ca , Wm

ha, and v>a represent the
trainable weights, and bma represents the bias. Each memory
slot mi is then updated in the following way:

mi = αt,ic
m
t + (1− αt,i)mi for i = 1, ..., S (9)

2) Read Operation: The next step for the memory module
is to read from the memory slots M. The normalized attention
weights βt = {βt,1...βt,i...βt,S} are such that:

bmt = v>b tanh(W
m
cb c

m
t +Wm

hbh
m
t−1 + bmb) (10)

and
βt,i =

exp(bt,i)∑S
j=1 exp(bt,j)

for i = 1, ..., S (11)

where Wm
cb , Wm

hb , and v>b represent the trainable weights, and
bmb represents the bias. The content rt read from the external
memory is the weighted sum of each memory slot content:

rt =

S∑
i=1

βt,i ·mi (12)

3) Hidden State Update: After performing the write and
read operations, the final task of the external memory at the
t-th iteration is to update its hidden state hmt as following:

hmt = σ(Wm
oho

m
t +Wm

rhrt +Wm
hhh

m
t−1 + bh) (13)

where Wm
oh, Wm

rh, and Wm
hh represent trainable weights, and

bma represents the bias.

C. Data preprocessing
The data used in the experiment proposed in this paper

come from the FD001 subdataset of the C-MAPSS dataset.
Such data has been preprocessed by following three steps: by
normalizing the data with a z-score normalization, by defining
a target function for the RUL and by using it to label the data,
and by cutting the time series using a sliding time window
approach.

1) Z-Score Normalization: Time series of sensor measure-
ments usually range between multiple scales. A normalization
step was hence performed to convert all these features into
a common scale. In particular, we are using the z-score
normalization, described as:

Norm(x) =
x− µ
σ

(14)

where µ and σ represent respectively the mean value and the
standard deviation of the feature x. By doing so, the data
points are such that their mean is zero, whereas their standard
deviation equals to one.

Fig. 3. The external memory of our architecture at time t with memory slots
M = [m1,m2, ...,mS], read and write heads αt and βt, input vector omt ,
and hidden state hmt .

Fig. 4. The piece-wise linear RUL target function [1].

2) RUL Target Function: We apply a piece-wise linear RUL
target function (pictured in Fig. 4) to represent the remaining
useful life of an engine, which limits the maximum value of
the RUL function to 130. This limitation is made in order to
prevent the learning algorithm from overestimating the RUL;
the piece-wise linear function is often regarded as the most
logical model to represent the degradation of an engine, as
the degradation of the analyzed system typically starts only
after a certain degree of usage [13, 7].

3) Sliding time window: The sliding time window approach
is used to process the run-to-failure data to give as an input to
the learning model. This preprocessing step was done in order
to extract data so that the input of the prediction model has
a fixed length. As shown in Fig. 1, the signal has n features
and the signal length is L. The data is extracted by sliding a
time window of size tl, and the sliding step size equals to one.
The size of the array extracted each time by the time window

5

TABLE I
SUMMARY OF THE FD001 SUBDATASET OF THE C-MAPSS DATASET.

Dataset FD001

Train trajectories 100
Test trajectories 100

Operating conditions 1
Fault conditions 1

is tl × n (length of the time window × numbers of features),
the total number of arrays is L− tl (life span - time window
length), and the output for each window is the corresponding
series of RUL values. In particular, we set the window length
tl = 30 in line with other works, such as [18] and [4].

D. Loss function

To train the model and obtain optimal weights and biases,
we are considering the Mean Square Error (MSE) as the loss
function to minimize. It is defined as:

MSE =
1

N

N∑
i=1

(RUL′i −RULi)
2 (15)

where MSE is the computed MSE value, N is the total
number of testing data samples, RUL′i and RULi represent
respectively the estimated RUL and the groundtruth RUL, with
respect to the i-th data point.

IV. EXPERIMENTAL RESULTS

A. The C-MAPSS Dataset

For our experiment and problem setting, we considered the
well-known NASA C-MAPSS (Commercial Modular Aero-
Propulsion System Simulations) Turbofan Engine Degradation
Simulation Dataset [12]. This dataset includes 4 subdatasets
called FD001, FD002, FD003 and FD004, consisting of mul-
tiple multivariate time series. The data of such time series
come from the sensors of different engines of the same type.
Considering that this work is a first approach in the utilization
of NTMs in the field of RUL estimation, at the moment we
have focused on the first subdataset (FD001); current work in
progress deals with the other datasets. A summary about the
number of time series (called trajectories), fault conditions
and operational conditions in the datasets is available in Table
I. During our experiments, we ignored some of the raw input
features because of their null variance. In particular, we kept
14 sensor measurements out of the total 21 sensors, whose
indices are 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and
21, this in order to be comparable with other works using the
same approach, e.g. [18] and [4].

B. Model evaluation

We are considering two objective metrics to test the perfor-
mance of the model: the Scoring Function, and the Root Mean
Square Error (RMSE).

1) Scoring Function: The Scoring Function was initially
proposed in [12] and is defined as:

S =

N∑
i=1

si, where si =

{
e

−hi
13 − 1, hi < 0

e
hi
10 − 1, hi ≥ 0

(16)

where S is the computed score, N is the total number of
testing data samples, and hi = RUL′i−RULi is the difference
between the estimated RUL and the groundtruth RUL, with
respect to the i-th data point. This Scoring Function was
designed to favor a safer, early prediction (i.e. estimating a
smaller RUL value with respect to the groundtruth), since late
prediction may result in more severe consequences.

2) Root Mean Square Error: The RMSE is a common
metric to evaluate prediction accuracy of the RUL, which gives
equal weights for both early and late predictions. The RMSE
is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(RUL′i −RULi)2 (17)

where RMSE is the computed RMSE value, N is the total
number of testing data samples, RUL′i and RULi represent
respectively the estimated RUL and the groundtruth RUL, with
respect to the i-th data point.

C. Model implementation

In our experiments we did not do a thorough search for the
hyper-parameters of the network, as we opted for a fixed set
of hyper-parameters in order to both be directly comparable to
the results shown in [1] and because of resources constraints.
In particular, in the aforementioned set of hyper-parameters
the hidden sizes of the two LSTM networks were set to 32
and 64 respectively, while the dimension of the memory bank
in the NTM was set to 64 times 32, and finally the number of
neurons in the two Feedforward networks were set to 8 and 1
respectively.

We also chose an initial learning rate of 0.005, decaying it
by 0.6 every 10 training epochs with a maximum amount of 50
training epochs. We are using the mini-batch gradient descent
training technique with a batch size of 100, and the RMSProp
algorithm [22] for optimization, with the default values for
momentum and weight decay.

The LSTM states and the biases were initialized to zero,
whereas the weights were sampled by using a normal distri-
bution with mean and standard deviation values set to 0 and
0.01 respectively.

Finally, we used PyTorch 1.3.0 to implement our model.

D. Discussion of the results

The results of our experiments are shown and compared to
other single-stream and double-stream architectures in Table
II.

First of all, we can see that our approach, based on the
combination of a Neural Turing Machine and an LSTM-based
network, achieves better results than those obtained with an
approach solely based on LSTM networks, which supports our

6

claim, confirming that the usage of an external memory can
better capture the hidden patterns and better encode the most
informative characteristics of the data.

Furthermore, in the Table II it can also be seen that our
proposed method compares really closely to [17] yet we are
neither performing any pretrain, nor we are optimizing the
hyper-parameters (as previously said in Section III we are
keeping a fix set of hyper-parameters). The aforementioned
techniques are in fact known to help when a boost to a
model performance is needed, especially the pretraining stage
[23]. We have not included them in our method yet, but
pretraining and evolutionary techniques can be easily applied
to any approach independently from its architecture, possibly
leading to significant improvements. Because of this we plan
to work on it in the nearest future and perform a thorough
ablation study to better understand all the implications. On one
hand, the study made by Ellefsen et al. shows that the authors
obtain improvements both in Score and in RMSE using the
unsupervised pretraining stage, which helps setting the initial
weights near a local minimum [23]. On the other hand, the use
of genetic algorithms to tune the hyper-parameters would most
probably improve the performance of our model by localizing
a set of favorable hyper-parameters.

The preprocessing performed in [24] tests two different
values for the time window length (50 and 70), both higher
than the length we used (30). They also show that they obtain
better performance using 50 as the window length. In [18] the
authors test two values for the window length (15 and 30),
and in their case they show that a higher value for the time
window length improves the obtained performance. Neither of
those papers compare the effects of using 30 and 50 as the
length of the window, so it is possible that a 50-steps window
is more informative than a 30-steps window. Moreover, the
model proposed in [24] also uses Dropout which again could
be a cause of better generalization.

Although from the point of view of the RMSE we are
obtaining similar values to those obtained by the CNN-based
network used in [8], our Score is lower, meaning that our
model seems to favor earlier (and thus safer) predictions.

Our proposed method, even though using only a single-
stream architecture, obtains comparable results to those ob-
tained by double-stream architectures. In particular, our so-
lution obtains both a better Score and a better RMSE with
respect to [18], while still using a single-stream, whereas it
does not show better performance with respect to [4]. The
improvements shown in [4] may be imputable to the usage
of the double-stream architecture itself because, as seen in
[21] and [8], the results obtained by using a single LSTM
and a single CNN respectively are pretty far from the current
state-of-the-art. The double-stream architecture proposed in [4]
instead, by making a single LSTM and a single CNN run in
parallel, achieves a much more favorable result.

Note that in this paper we explore the integration of the

* In [4] the experimental setting is different in the RMSE evaluation.

TABLE II
COMPARISON WITH THE LITERATURE. (SS) AND (DS) INDICATES
WHETHER THE ARCHITECTURE IS SINGLE- OR DOUBLE-STREAM.

Methods Years
Score RMSE

FD001

MLP [7] (ss) 2016 1.80× 104 37.56
SVR [7] (ss) 2016 1.38× 103 20.96
RVR [7] (ss) 2016 1.50× 103 23.80
CNN [7] (ss) 2016 1.29× 103 18.45

LSTM [1] (ss) 2017 3.38× 102 16.14
ELM [16] (ss) 2017 5.23× 102 17.27
DBN [16] (ss) 2017 4.18× 102 15.21

MODBNE [16] (ss) 2017 3.34× 102 15.04
BLSTM [14] (ss) 2018 – 14.26

RNN [8] (ss) 2018 3.39× 102 13.44
DCNN [8] (ss) 2018 2.74× 102 12.61

BiLSTM [15] (ss) 2018 2.95× 102 13.65
GADLM [17] (ss) 2019 2.31× 102 12.56

Attn-DLSTM [24] (ss) 2019 – 12.22
BHLSTM [3] (ss) 2019 3.76× 102 –

HDNN [18] (ds) 2019 2.45× 102 13.01
DAG [4]* (ds) 2019 2.29× 102* 11.96*

Our approach (LSTM) (ss) 2020 3.39× 102 16.16
Our approach (LSTM+NTM) (ss) 2020 2.42× 102 12.50

NTM component with the widely used LSTM networks in
order to evaluate its impact. However, given the modularity
of the Neural Turing Machine, our mnemonic component can
be easily integrated in other competitive architectures in order
to improve their performance. For example, the CNN-based
approach proposed in [8] may benefit from the use of an NTM
shared between the convolutional layers of the architecture. In
double-stream architectures, such as [4] and [18], the NTM
may be used as a “bridge” between the two streams. We
leave as a future work the integration of the NTM in the
aforementioned architectures.

About the results we obtained, it is possible to see in Figure
5 that in the majority of the mispredictions performed by
our model the error (computed as RUL′i − RULi, i.e. the
difference between the predicted and the groundtruth RUL) is
between 0 and 20, so it tends to overestimate the remaining
useful life of the mechanical device. Considering the results in
Figure 6 it is easily noticeable that our model fails to estimate
the RUL when it is higher than 120. This may be due to the
piece-wise linear labeling function we are using. In [25] it is
possible to see that they predict RUL values higher than 130,
but they are using a linear degradation function with respect
to the cycle, and not the piece-wise function that we are using.

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose a novel approach to the Remaining
Useful Life Estimation problem based on Neural Turing Ma-
chines, and in experimental section we show that we obtain
very favorable and promising results considering that we are

7

Fig. 5. Histogram of the prediction error (calculated as RUL′i − RULi):
it shows that in 46 of the 100 test series the prediction error was between 10
and 20.

Fig. 6. Predicted RUL values and groundtruth RUL values for dataset FD001.

using a single-stream architecture.
Furthermore, being a first approach using the Neural Turing

Machines for the RUL estimation problem there is room for
future improvements. In particular, a first step could be finding
a more favorable set of hyper-parameters by utilizing genetic
algorithms, as done in [17], since the hyper-parameters used
in our experiments were fixed. Another possible improvement
could involve the design of a double-stream architecture
revolving around the exploitation of NTMs. Moreover, we
did not explore the use of other RNNs, nor the use of
bidirectional RNNs. For instance, as seen in [15], the use of
Bidirectional LSTMs could bring improvements with respect
to the use of unidirectional LSTMs since the former can
explore the sequence in input along both directions while the
latter cannot. A further development could be the introduction
of an Attention model in the feature extraction layers (i.e. in
the LSTM network) in our architecture, as done in [24]. A
final way to boost the performance of our model could be the
usage of a different loss function, oriented to safer predictions.
In particular, possible examples of such loss functions can

be the Asymmetric Square Error (ASE) and the Asymmetric
Absolute Error (AAE) functions introduced in [3], which are
shown to make the model generate earlier predictions.

REFERENCES

[1] Shuai Zheng et al. “Long short-term memory network
for remaining useful life estimation”. In: 2017 IEEE
International Conference on Prognostics and Health
Management (ICPHM). IEEE. 2017.

[2] Dawn An, Joo-Ho Choi, and Nam Ho Kim. “Prediction
of remaining useful life under different conditions using
accelerated life testing data”. In: Journal of Mechanical
Science and Technology 32.6 (2018), pp. 2497–2507.

[3] Ahmed Elsheikh, Soumaya Yacout, and Mohamed-
Salah Ouali. “Bidirectional handshaking LSTM for re-
maining useful life prediction”. In: Neurocomputing 323
(2019), pp. 148–156.

[4] Jialin Li, Xueyi Li, and David He. “A directed acyclic
graph network combined with cnn and lstm for remain-
ing useful life prediction”. In: IEEE Access 7 (2019),
pp. 75464–75475.

[5] Qiyao Wang et al. “Remaining useful life estimation
using functional data analysis”. In: 2019 IEEE Interna-
tional Conference on Prognostics and Health Manage-
ment (ICPHM). IEEE. 2019.

[6] Ahmed Mosallam, Kamal Medjaher, and Noureddine
Zerhouni. “Data-driven prognostic method based on
Bayesian approaches for direct remaining useful life
prediction”. In: Journal of Intelligent Manufacturing
27.5 (2016), pp. 1037–1048.

[7] Giduthuri Sateesh Babu, Peilin Zhao, and Xiao-Li Li.
“Deep convolutional neural network based regression
approach for estimation of remaining useful life”. In:
International conference on database systems for ad-
vanced applications. Springer. 2016.

[8] Xiang Li, Qian Ding, and Jian-Qiao Sun. “Remaining
useful life estimation in prognostics using deep convo-
lution neural networks”. In: Reliability Engineering &
System Safety 172 (2018), pp. 1–11.

[9] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural
turing machines”. In: arXiv preprint arXiv:1410.5401
(2014).

[10] Chenyou Fan et al. “Heterogeneous memory enhanced
multimodal attention model for video question answer-
ing”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE. 2019.

[11] Tkačı́k Jan and Pavel Kordı́k. “Neural turing machine
for sequential learning of human mobility patterns”.
In: 2016 International Joint Conference on Neural
Networks (IJCNN). IEEE. 2016.

[12] A. Saxena and K. Goebel. “Turbofan Engine Degrada-
tion Simulation Data Set”. In: NASA Ames Prognostics
Data Repository (2008). URL: http: / / ti .arc.nasa.gov/
project/prognostic-data-repository.

8

[13] F. O. Heimes. “Recurrent neural networks for remaining
useful life estimation.” In: International Conference on
Prognostics and Health Management (PHM). IEEE.
2008.

[14] Ansi Zhang et al. “Transfer learning with deep recurrent
neural networks for remaining useful life estimation”.
In: Applied Sciences 8.12 (2018), p. 2416.

[15] Jiujian Wang et al. “Remaining useful life estimation
in prognostics using deep bidirectional lstm neural net-
work”. In: 2018 Prognostics and System Health Man-
agement Conference (PHM-Chongqing). IEEE. 2018.

[16] Chong Zhang et al. “Multiobjective deep belief net-
works ensemble for remaining useful life estimation in
prognostics”. In: IEEE transactions on neural networks
and learning systems 28.10 (2016), pp. 2306–2318.

[17] André Listou Ellefsen et al. “Remaining useful life
predictions for turbofan engine degradation using semi-
supervised deep architecture”. In: Reliability Engineer-
ing & System Safety 183 (2019), pp. 240–251.

[18] Ali Al-Dulaimi et al. “A multimodal and hybrid deep
neural network model for remaining useful life estima-
tion”. In: Computers in Industry 108 (2019), pp. 186–
196.

[19] Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
“Learning long-term dependencies with gradient de-
scent is difficult”. In: IEEE transactions on neural
networks 5.2 (1994), pp. 157–166.

[20] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-
term memory”. In: Neural computation 9.8 (1997),
pp. 1735–1780.

[21] Yuting Wu et al. “Remaining useful life estimation of
engineered systems using vanilla LSTM neural net-
works”. In: Neurocomputing 275 (2018), pp. 167–179.

[22] G. Hinton. The RMSProp optimizer. pre-
sented in http://www.cs.toronto.edu/ tij-
men/csc321/slides/lecture slides lec6.pdf. 2014.

[23] Xavier Glorot and Yoshua Bengio. “Understanding
the difficulty of training deep feedforward neural net-
works”. In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics. 2010.

[24] Ankit Das et al. “Deep Recurrent Architecture with
Attention for Remaining Useful Life Estimation”. In:
TENCON 2019-2019 IEEE Region 10 Conference
(TENCON). IEEE. 2019.

[25] Khaled Akkad and David He. “A Hybrid Deep Learn-
ing Based Approach for Remaining Useful Life Esti-
mation”. In: 2019 IEEE International Conference on
Prognostics and Health Management (ICPHM). IEEE.
2019.

