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Abstract. Episodic memory involves the ability to recall specific events,
experiences, and locations from one’s past. Humans use this ability to
understand the context and significance of past events, while also being
able to plan for future endeavors. Unfortunately, episodic memory can
decline with age and certain neurological conditions. By using machine
learning and computer vision techniques, it could be possible to “observe”
the daily routines of elderly individuals from their point of view and pro-
vide customized healthcare and support. For example, it could help an
elderly person remember whether they have taken their daily medica-
tion or not. Therefore, considering the important impact on healthcare
and societal assistance, this problem has been recently discussed in the
research community, naming it Episodic Memory via Natural Language
Queries. Recent approaches to this problem mostly rely on the literature
related to similar fields, but contextual information from past and fu-
ture clips is often unexplored. To address this limitation, in this paper
we propose the Time-aware Circulant Matrices technique, which aims at
introducing awareness of the surrounding clips into the model. In the
experimental results, we present the robustness of our method by ablat-
ing its components, and confirm its effectiveness on the Ego4D public
dataset, achieving an absolute improvement of more than 1% on R@5.

Keywords: Natural language query for temporal localization · Cross-
modal understanding.

1 Introduction

The ability to remember events that occur in our lives is a fundamental aspect of
human cognition, known as episodic memory [27]. As humans, we can remember
past experiences and recall specific details about them, such as when and where
they occurred, who was present, and what happened. For instance, to follow a
balanced diet, we may want to prepare dinner depending on what we had for
lunch, which entails our ability to precisely recall the ingredients in order to com-
pute their macro nutrients. Similarly, elderly people may need to ingest several
medications throughout the day, but are they able to recall whether they took
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everything they need or not? To support the users in these situations by means of
an intelligent system, two main components are needed. First, augmented reality
glasses and similar vision systems can be used to capture the environment and
the interactions with it over time, through a first-person perspective. Second, the
system needs to process these visual information and then, once the user asks a
question, provide the correct answer by contextualizing them to the contents of
the question. Given the need to process both visual and auditory data, this sec-
ond component requires the use of a variety of artificial intelligence techniques.
One recent approach to it is Episodic Memory via Natural Language Queries
(NLQ) [15], in which the questions are expressed in textual form to leverage the
recent advancements in natural language processing.

To address the new problem, two baselines were utilized, drawing inspiration
from previous works on temporal activity localization (TAL), which required to
identify and localize simple actions in a video [34, 33]. Compared to TAL, NLQ
is more difficult as it requires to localize the moment in time from which the an-
swer to an input question can be deduced. Nonetheless, there are several shared
problems between TAL and NLQ, including the length of the untrimmed videos
and the need to capture multimodal interactions. To deal with these problems,
Ge et al. in [12] discovered both textual and visual concepts and used them to
ease activity localization, using both the sentence/video embeddings and the
concepts embeddings, e.g. verb-object textual pairs and high level concepts ex-
tracted from pretrained deep networks. Wu et al. in [28] proposed Multimodal
Circulant Fusion, which allowed for multimodal interactions between the visual
features and the circulant matrix of textual features, and vice versa, leading to
improved localization accuracy. Recently, Zhang et al. in [35] simultaneously ex-
plored intra- and inter-modal relations through a multimodal interaction graph.
While these methods propose solutions that allow for an improved understand-
ing of the data under analysis, the temporal relations between frames and short
clips are often neglected in later parts of the network architecture. To address
this limitation, we introduce the Time-aware Circulant Matrices technique, en-
abling an improved intra-modal reasoning by injecting temporal awareness into
later parts of the network. We confirm the effectiveness of our method by testing
it on the Ego4D dataset [15], in which we improve the baseline performance in
all the metrics under consideration. Moreover, we perform ablation studies and
experiments to support our design choices.

The main contribution of this work can be summarized as follows:

– we propose to address the NLQ task by introducing the Time-aware Circu-
lant Matrices technique, which injects temporal awareness by modelling the
local context and taking it into account when performing the analysis of the
visual features;

– by testing our solution in the Ego4D benchmark, we show that our pro-
posed method achieves considerable improvements in all the metrics under
consideration.

After this introduction, the related work is described in Section 2. Then,
Section 3 presents and motivates the proposed Time-aware Circulant Matrices
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technique. The experimental results are presented in Section 4 and, finally, Sec-
tion 5 concludes the manuscript.

2 Related work

2.1 Episodic memory via Natural Language Queries

This challenging problem aims at identifying the moments in a video which
contain relevant information to provide the correct answer to a given question.
Note that the answer is found within the video (e.g., where did I forget the
car keys?), hence why it is called episodic; in contrast, factual/semantic mem-
ory refers to the ability of recalling the correct answer from external knowledge
bases (e.g., does Italy share a border with Spain?). Recent advancements on this
topic are mostly related to the homonymous Ego4D benchmark track. The ini-
tial baselines, VSLNet [33] and 2D-TAN [34], were inspired from previous works
on language grounding in video. The former implements at its core a 2D map
of adjacent moment candidates, which are then queried by the sentence repre-
sentation to obtain the best matching one; whereas the latter directly regresses
the start and end boundaries from the input visual and textual features, sup-
porting this process by means of a query-guided highlighting module. Building
upon these works, several solutions were recently proposed. Lin et al. [18] used
VSLNet on top of pretrained EgoVLP features [19]. To tackle the low amount of
videos, ReLER [21] proposed data augmentation techniques on top of a multi-
scale Transformer-based encoder for VSLNet and several pre-extracted visual
and textual features [9, 13, 24]. Hou et al. in [16] proposed a three-stage ap-
proach consisting of feature filtering, using a pre-trained video-language model
(EgoVLP [19]), moment proposal with Moment-DETR in [17] extended with
inter-windows contrastive learning, and finally a novel intra-windows fine-grained
ranking strategy. Mo et al. in [23] used a simple Transformer-based method called
ActionFormer [32]. A foundational model, InternVideo in [4], recently obtained
state-of-the-art results on dozens of challenges and datasets, and was used as a
backbone for VSLNet.

Differently from them, we focus on the modelling aspects and propose a novel
technique, which we call Time-aware Circulant Matrices, to analyze the visual
features and peek into the surrounding context to discover underlying patterns.
Circulant matrices were also used in a previous work dealing with TAL [28] to
compute additional relations between multiple sources of information. In this
work, we further extend this technique by integrating contextual awareness in
its framework.

2.2 Temporal action localization and video moment retrieval

Temporal action localization and video moment retrieval are similar tasks to the
problem under analysis. Temporal action localization requires to identify each
action instance in the video, predict its temporal boundaries, and categorize it
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in a finite set of classes. This problem is typically tackled either in a two-stage or a
single-stage fashion. The former starts by first generating coarse video segments
as action proposals (e.g., by using anchor windows [3, 8] or action boundaries
[14, 36]), and then by classifying them with action recognition models. In the
latter strategy, the proposed approaches try to simultaneously locate and classify
the actions without relying on generated action proposals or external classifiers
[5, 20]. Video moment retrieval (VMR) is even closer to Episodic memory via
Natural Language Queries, since it requires to localize and retrieve the moments
which are described by an input textual query. As in the previous case, one-stage
and two-stage approaches have been proposed for VMR. In two-stage approaches,
the input video is first split into multiple candidate moments (e.g., by using a
sliding window approach) which are then ranked to select the best matching ones
[10, 34]; in the one-stage scenario, no predefined candidate moments are used and
each frame is a possible candidate to represent the initial or final frame of the
moment [6, 31].

However, both these problems present some fundamental differences with
NLQ, leading to models with different capabilities and goals. In fact, while TAL
requires to identify and localize simple actions in a video, and VMR requires to
retrieve all the moments which can be described by an input textual query, NLQ
requires to locate a precise moment depicting certain visual cues from which it is
possible to infer the answer to a given question. For instance, this means that if
we are trying to recall the color of the dress worn by the person we spoke with, in
VMR we either need to locate all the moments in which we interact/speak with
someone, resulting in a coarse selection which would need further processing, or
we need to already know the answer, i.e., the color of the dress, and insert it into
the query. Therefore, while both these problems are related to the NLQ, they
aim at solving different tasks.

3 Proposed method

An overview of the method is shown in Figure 1. We start by briefly describing
the overall procedure (Section 3.1), then we focus on the details of the proposed
Time-aware Circulant Matrices technique in Section 3.2.

3.1 Overview of the procedure

Starting from the visual and textual features, V ∈ Rn×fv and Q ∈ Rm×ft , a
convolutional layer is applied to project the heterogeneous features to the same
dimension d, i.e., V ′ ∈ Rn×d, Q′ ∈ Rm×d. Then, a Feature Encoder made of a
single Transformer Encoder is used to learn for both of them an independent
representation in a common space, resulting in Ṽ and Q̃.

To model the cross-modal interactions and discover more patterns in the
underlying visual data, while also leveraging temporal relations in their progres-
sion over time, we use the following equation, based on Context-Query Attention
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Fig. 1: Overview of the proposed method, Time-aware Circulant Matrices
(TCM). The legend shows how Sr and Sc are computed from Ṽ and Q̃. More
details about the proposed method, TCM, and the other components, CQA,
QGH, and CSP can be found in Section 3. Best viewed in color.

(CQA) [33] and inspired from previous works, e.g., [29, 30]:

V Q = FFN([Ṽ , V TCM , A, Ṽ ◦A, Ṽ ◦B]) (1)

where FFN is a linear layer and the other components are obtained as follows.
V TCM is derived through the novel three-step process which we name Time-
aware Circulant Matrices and explain in Section 3.2. A and B are obtained by
attending Q̃ and Ṽ through Sr and Sc, which are the row-wise and column-wise
softmax normalization of S, i.e., their similarity matrix, S = Ṽ · Q̃T , S ∈ Rn×m.
Specifically, A = Sr · Q̃, A ∈ Rn×d and B = Sr · ST

c · Ṽ , B ∈ Rn×d. The element-
wise multiplication is depicted with ◦. The features in V Q are then combined with
hQ, i.e., a sentence-level representation of the word features Q̃ obtained through
content-based attention [1], to form V̂ Q =

[
[vQ1 ;hQ], [v

Q
2 ;hQ], . . . , [v

Q
n ;hQ]

]
.

Then, the Query-Guided Highlighting (QGH) module introduced in [33] is
responsible for discriminating “foreground” moments, i.e., those which are rel-
evant to the target, from the “background” ones, while also allowing for some
flexibility in the boundaries: by labeling each moment with a binary label (0 for
background, 1 for foreground), QGH reduces to a binary classification problem
which helps highlighting important features obtained as Ṽ Q = Sh · V̂ Q, where
Sh is the highlighting score, computed as σ(Conv1D(V̂ Q)).

Finally, the prediction of the boundaries is done by the Conditioned Span Pre-
dictor (CSP), which uses a shared Transformer Encoder with 4 layers, followed
by two convolutional-based networks, to predict the start and end probability
distributions, ps, pe ∈ Rn, starting from the Ṽ Q features. The model is trained
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by means of the following joint loss function:

L = Lspan + LQGH

Lspan =
1

2

(
fCE(ps, ys) + fCE(pe, ye)

)
LQGH = fBCE(Sh, Yh)

(2)

where fCE is the Cross Entropy loss computed between the groundtruth and
the predicted probability distributions for start, ys and ps, and end boundaries,
ye and pe; and fBCE is the Binary Cross Entropy loss used by the QGH module
to compute the loss between the predicted and groundtruth highlighting scores,
Sh and Yh.

3.2 Time-aware Circulant Matrices technique

The proposed Time-aware Circulant Matrices technique consists of a three-steps
procedure used to discover additional temporal intra-modal relations in the vi-
sual features.

First of all, given the video features V = [x1, x2, . . . , xN ], each clip vector
xi ∈ R1×d is transformed into its circulant matrix, vCM

i ∈ Rd×d. This is obtained
by the following equation:

vCM
i = (

→0
xi

→1
xi . . .

→d−1
xi )T (3)

where
→j

xi = [x(d−1)−j+1, x(d−1)−j+2, . . . , x0, . . . , x(d−1)−j ], i.e.,
→j

xi represents a
shift in xi by j.

Secondly, the resulting vCM
i is multiplied by F([xi−c, . . . , xi, . . . , xi+c]) to

establish further relations between each visual feature and the surrounding clips.
By doing so, temporal awareness is injected into the model and, using a context
of size c, the contextual information is obtained through the aggregator function
F . Formally:

Zi = vCM
i ∗ F([xi−c, . . . , xi+c]) (4)

where F([xi−c, . . . , xi+c]) ∈ R1×d is broadcast to all the rows in vCM
i . To imple-

ment F , we consider a linear transformation of the concatenated context as in
the following equation:

F([xi−c, . . . , xi+c]) = Wlin[xi−c, . . . , xi+c] + blin (5)

where Wlin and blin are learned at training time.
Lastly, the column-wise average of Zi is utilized to collate the newly identified

information, leading to vTCM
i :

vTCM
i =

1

d

d∑
j=1

z
(j)
i (6)

which represents the i-th vector of V TCM ∈ RN×d, the output of the proposed
Time-aware Circulant Matrices technique.
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By performing these three steps, we obtain different combinations of the
visual features, possibly leading to the discovery of additional relations which
were not previously considered. Note that the use of circulant matrices was also
considered in [28] for better video-language understanding capabilities. However,
up to our knowledge they have not been used for video temporal modelling.

4 Experimental results

In this section, we first discuss the dataset and evaluation metrics, and the
implementation details. Then, we present the experimental results related to the
temporal context modeling and width, a study on the use of an asymmetric
context, an ablation study on the proposed technique, and a comparison with
the state of the art.

4.1 Dataset and evaluation metrics

The Ego4D dataset [15] is a large-scale collection of egocentric perspective videos
that comprises over 3000 hours of footage. The videos are divided into clips which
are 8 minutes long and annotated by a short narration (6-8 words), yielding
roughly 3.85 million annotations. About 17000 queries for training and valida-
tion are created from these annotations for the Episodic Memory via Natural
Language Queries task, using different templates such as “where is X after Y?”,
where X is an object and Y an event, and “who did I talk to in Z?”, where Z is a
location. The main evaluation metric used is Recall@k, IoU=m, which measures
the proportion of instances where the intersection-over-union (IoU) between the
ground truth interval and at least one of the top k predictions is greater than or
equal to m. The values of k and m used are k = 1, 5 and m = 0.3, 0.5.

4.2 Implementation details

To implement the proposed method, we start from the official codebase provided
for VSLNet3. The PyTorch version is 1.11.0. The training procedure lasts for 200
epochs and the best model on the validation set is selected. The optimizer used
is AdamW with a learning rate of 0.0001. The batch size is 32 and we used 512
as the maximum for the positional embedding in the Feature Encoder and the
CSP. We use BERT [7] for the textual features and InternVideo for the visual
ones [4].

4.3 Temporal context modeling and width

We consider three possibilities for the function F which is used to aggregate
the temporal context [xi−c, . . . , xi+c] as detailed in Eq. 4. These include: the
linear transformation of the concatenated context (cat+lin), which is part of
3 https://github.com/EGO4D/episodic-memory/tree/main/NLQ/VSLNet
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the proposed method; a simple mean pooling, in which F([xi−c, . . . , xi+c]) =
1

2∗c+k

∑i+c
j=i−c xj , where c is the size of the context (see Sec. 3) and k = 1 if xi is

used, otherwise k = 0; and finally a GRU model, in which F([xi−c, . . . , xi+c]) =
h2∗c+k, where h2∗c+k is the last hidden state computed by the GRU.

Figure 2 reports the results obtained by the different models as the size of the
considered temporal context increases. Specifically, on the top line R@1 is shown
(respectively, with IoU=0.3 and IoU=0.5), whereas the bottom line displays R@5
values. In each of the four plots, the result achieved by VSLNet is reported for
reference. Overall, it can be seen that introducing the contextual information
obtained from the surrounding clips can be helpful. Specifically, the cat+lin
strategy achieves good results when the context is small, e.g., it achieves better
R@1 (IoU=0.5) and R@5 performance than the mean pooling when c = 2 (19.7%
and 14.6% respectively for IoU=0.3 and IoU=0.5); its performance decreases as
c increases, most likely because each time an element is added to the context,
the weight parameter becomes bigger, possibly leading to higher memorization
and lower generalization. The mean pooling leads to generally good results, with
two best solutions: when xi is not included in the context, c = 20 leads to the
highest metrics, e.g., it achieves 12.1% R@1 IoU=0.3 (+1.3% than the baseline)
and 7.4% R@1 IoU=0.5 (+0.4%); whereas c = 10 is preferred when xi is included,
e.g., it achieves similar R@1 in both IoU thresholds, but better R@5 (19.4% R@5
IoU=0.3, +0.9% than the baseline, and 14.5% R@5 IoU=0.5, +1.3%). Finally,
the GRU solution does not lead to improvements when compared to the baseline.

The solution obtained by the concatenation and the linear leads to the best
performance across most of the considered metrics, therefore it was chosen for
the proposed method.

4.4 Asymmetric context

In Section 3, the context which is aggregated by the function F has a size
determined by the hyperparameter c and consists of the surrounding clips, both
from past and future ones. In this experiment, we aim to investigate the effect of
an asymmetric context, that is by using two values of c, cp and cf , and vary the
amount of past and future information used. Figure 3 reports the mR@1 (Fig. 3
left) and the mR@5 (Fig. 3 right), i.e., the average value computed at IoU=0.3
and IoU=0.5 for R@1 and R@5, obtained on the validation set.

It can be seen that completely removing either of them (past or future clips)
leads to generally worse solutions, e.g., up to 9.4% mR@1 and 16.6% mR@5 is
obtained when either cp = 0 or cf = 0, whereas 9.7% and 17.1% are obtained
when cp = cf = 2. In contrast, when reducing either of them, but keeping at
least both one past and one future clip leads to less conclusive statements: for
instance, it leads to up to 9.3% mR@1 and 16.5% mR@5 when, respectively,
cp = 1, cf = 1 whereas with cp = cf = 2 it achieves 9.7% and 17.1%. However,
compared to cp = cf = 3, a cp of 2 leads to slightly better performance (e.g.,
16.9% mR@5 compared to 16.7%). These results confirm that the model learns
how to effectively make use of the contextual information from both preceding
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Fig. 2: Recall@1 (top) and Recall@5 (bottom) for two levels of IoU (left:
IoU=0.3, right: IoU=0.5) computed on the validation set as the temporal model
and the size of the context vary. VSLNet (base) is reported for reference. The
other models are the Mean pooling, concatenation followed by a linear (cat+lin),
and the GRU. Each model is tested both with (w/ x_i) and without xi in the
context (w/o x_i). Details in Section 4.3. Color scale from red (worse than base)
to blue (better).

and subsequent clips, although increasing the context too much might lead to
worse generalization, due to an increased number of trainable parameters.

4.5 Ablation study

In this ablation study, we show that the addition of the temporal awareness
and the use of the circulant matrices are both important for the model. The
results are reported in Table 1. The first line reports the performance achieved
by the proposed method. In the second line, we remove the contextual awareness
provided in Eq. 4, that is F([xi−c, . . . , xi+c]) = xi is used. The experimental
results confirm that providing the model the information from the surrounding
clips is useful, as in fact all the metrics decrease. Then, if the circulant matrices
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Fig. 3: Mean of Recall@1 (left) and Recall@5 (right) computed on the validation
set as the amount of past, cp, and future, cf , clips in the context varies. VSLNet
is reported for reference at cp = 0, cf = 0. Details in Section 4.4. Color scale
from red (worse than the baseline) to blue (better).

Table 1: Ablation study reporting best results on validation set.

Method R@1 R@5
IoU=0.3 IoU=0.5 Mean r@1 IoU=0.3 IoU=0.5

TCM 11.72 7.64 9.68 19.70 14.56
w/o T 11.33 7.12 9.23 19.02 13.99

w/o CM 10.76 7.02 8.89 18.48 13.16

are also removed, the VSLNet baseline is again obtained: as in the previous case,
the metrics indicate the usefulness of the features obtained through the addition
of the circulant matrix in Eq. 1.

4.6 Comparison with state-of-the-art

As a final experimental result, we compare the performance achieved by the
proposed method to that of several published works. VSLNet [33] is the baseline
method and the results on the test set are taken from [15]. MSRA-AIM3 used a
different set of pre-extracted visual features, made of both Swin Transformer and
CLIP [22, 24], which are first encoded by a Transformer-based Feature Encoder
and then by a cross-modal encoder using multiple Transformer layers working
on both visual and textual inputs [37]. EgoVLP is a pretraining strategy based
on Frozen-in-Time [2] which used two separate Transformers to encode visual
and textual inputs directly from the raw data, and pretrained them with a
customized task based on multiple choice question answering and a loss function
designed to specialize the selection of the samples used for the contrastive loss
[18]. Finally, ReLER used a multi-scale cross-modal Transformer to model the
complex interactions between video and text, two data augmentation techniques
to reduce overfitting issues, and additional loss functions [21].



Time-aware Circulant Matrices for Question-based Temporal Localization 11

Table 2: Results obtained on the test set.

Method R@1 R@5
IoU=0.3 IoU=0.5 Mean r@1 IoU=0.3 IoU=0.5 Mean r@5

VSLNet [33] 5.45 3.12 4.28 10.74 6.63 8.68
MSRA-AIM3 [37] 10.34 6.09 8.22 18.01 10.71 14.36

EgoVLP [18] 10.46 6.24 8.35 16.76 11.29 14.02
ReLER [21] 12.89 8.14 10.51 15.41 9.94 12.67
TCM (ours) 11.64 6.84 9.24 17.43 11.39 14.41

Table 2 presents the comparison. It can be seen that by using the pro-
posed technique, we achieve better performance than VSLNet, MSRA-AIM3,
and EgoVLP. Compared to ReLER we achieve better Recall@5, meaning that
the top 5 candidates predicted by our model are generally more precise than those
predicted by ReLER; on the other hand, ReLER achieves better Recall@1, mean-
ing that their first candidate is generally more precise than ours. This may be
due to the additional samples “generated” by the data augmentation techniques.

There are also some very recent works which tackle this challenging task
[25], but the results are difficult to compare since an updated version of the
annotations for the dataset, almost doubling the total amount of annotations
(around 27k queries in place of the 17k that we used), has been released. In
future work, the new version of the dataset will be considered.

5 Conclusions

Machines often lack the ability to remember past events involving other people,
the interactions both with objects and other people, and the locations, i.e.,
episodic memory, which, on the other hand, is a fundamental aspect of human
cognition. Considering the important impact on healthcare, societal assistance,
and education, a novel problem has been recently proposed, called Episodic
Memory via Natural Language Queries [15]. Previous works from the literature
address this problem by leveraging methods inspired from other research domains
(temporal activity localization and video moment retrieval), although in most
of them the usage of contextual information from adjacent clips is limited to
early layers of the network and often unexplored. In this paper, we address this
limitation by proposing the Time-aware Circulant Matrices technique, which
injects contextual awareness and intra-modal reasoning in later parts of the
model. The experimental results motivate the design choices of the proposed
method, present its robustness by means of an ablation study, and also confirm
its effectiveness by comparing it to other state of the art methods from the
literature. As a future work, we aim at further exploring its effectiveness on other
datasets from the video-language grounding literature [11, 26], and extend its
intra-modal reasoning to enable the understanding of cross-modal interactions.
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