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Abstract. The prediction of the Remaining Useful Life of a machine
component represents a strategic problem in predictive maintenance,
which may have important consequences for a company. Recent ap-
proaches to this problem leverage data-driven methodologies based on
deep learning, achieving impressive results. In particular, due to the tem-
poral nature of the sensor measurements detailing the life of a compo-
nent, neural sequence models are often chosen to automate the feature
extraction process. In this paper, we investigate several of these mod-
els on a particle filtration system. The experiments performed present
the good prediction capabilities of these models, highlighting some of
them for their accuracy. Nonetheless, the qualitative analysis shows that
when the fault is farther away, most of these models tend to have unsta-
ble predictions. These results motivate some future research directions
which are discussed in the conclusions.
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1 Introduction

Recently, the United States Department of Energy reported that most of the
companies in the USA follow a reactive maintenance strategy, that is they wait
for a machine component to fail instead of properly maintaining it [1]. To avoid
the replacement of extremely costly components, being able to accurately esti-
mate when a failure is going to happen, that is to estimate its Remaining Useful
Life (RUL), represents a strategic problem which is often put at the core of
predictive maintenance [2].
Commonly, the methods for the RUL estimation task methods are either model-
based or data-driven. In the former case, the predictions are made by physical
or mathematical models which simulate the degradation of the machine under
analysis [3, 4]; however, because of the need for domain expertise and exten-
sive verification, they are highly complex, expensive, and need to be designed
in a case-by-case manner. The methods developed with the second methodology
rely on historical sensor data to build an approximate degradation model by
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leveraging handcrafted features [5, 6]. Although powerful and often applicable to
heterogeneous domains, they still rely on domain expertise in order to perform
the feature engineering step. Recently, data-driven methodologies which use deep
learning gained a lot of attention [7, 8], thanks to their automatic feature extrac-
tion step, which works directly on raw data, and ease of application to different
domains. In particular, neural sequence models are often chosen because they
inherently discover hidden patterns in temporally-related data [9, 10].
This paper investigates the prediction capabilities of neural sequence models.
The experiments are performed on a public dataset from particle filtration sys-
tems [11], which are often deployed in manufacturing companies dealing with
food and beverage, semiconductor and electronic components, and many more.
The evidences presented in this paper highlight the accuracy of some of these
models when modelling the evolution of the health state of the analyzed machine.
Nonetheless, the qualitative analysis shows that this prediction is less accurate
when the fault is far away.

2 Related Work

Model-based and data-driven methods. The problem of correctly estimat-
ing the RUL has been strategic for several decades [12, 13]. Traditional ap-
proaches can be divided in model-based and data-driven. The former use math-
ematical or physical models of the degradation phenomena, e.g. [14, 15], thus
requiring an in-depth understanding of the underlying system and the failure
modes. Instead, data-driven methods build a degradation model solely based
on historical sensor data. Methods based on statistics, e.g. [5, 16], and Artifi-
cial Intelligence, e.g. [6, 17], are popular examples. Instead of relying on a deep
understanding of the underlying system, data-driven methods leverage hand-
crafted features which are extracted from the raw data. However, such a feature
engineering step can be time consuming and may still rely on domain knowledge.
Deep Learning-based methods. A major advantage of deep learning consists
in the automatic extraction of the features, as opposed to handcrafted ones.
Initial approaches with these techniques used Multilayer Perceptrons (MLP)
to estimate the RUL directly from raw data [18]. However, since the sensor
measurements are taken periodically, they likely have temporal dependencies,
making neural sequence models a more suitable choice. RNNs were used in [18],
yet they can fail at remembering information from long time series. To overcome
this issue, memory-based networks were used to store key knowledge over time:
for instance, LSTMs [7, 19] and GRUs [20, 21] were often used. More recently,
NTMs also showed potential in this field by using a memory bank and learnable
operations to access and modify it [8, 22].

3 Methodology

An overview of the methodology followed in this study is shown in Figure 1.
In particular, the time series are first sliced into shorter windows, normalized
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Fig. 1. Graphical overview of our methodology. The series of sensor measurements
are first sliced into short windows. A sequence model is used to automatically extract
relevant features from the raw data. Finally, a MLP is used to estimate the RUL values.

through MinMax, and then labelled with a piece-wise degradation function [18]
with a max RUL of 125, as in [23]. The sequences are then modelled by means
of a neural sequence model, including Recurrent Neural Networks (RNN), Long
Short-Term Memory Networks (LSTM), Gated Recurrent Units (GRU), and
Neural Turing Machines (NTM). Then, a mapping function between the auto-
matically extracted features and the RUL values is learned by using an MLP.
Finally, the network weights are optimized by using the Mean Square Error of
the predictions. In the following, these sequence models are briefly described.

Recurrent Neural Network. The data typically considered in the Prog-
nostics and Health Management field is composed of long time series measure-
ments of sensors data. To model temporally-related sequential data and the
evolution of its intrinsic characteristics, RNNs have shown good performance
in extrapolating hidden patterns in data. RNNs are a class of artificial neural
networks which compute the t-th output by using the t − 1-th output together
with the t-th element of the input sequence. RNNs are affected by two problems
when calculating the gradient of the cost function over long input sequences: the
vanishing gradient problem, in which the value of the gradient gradually con-
verges to zero (thus “vanishing”), and the exploding gradient problem, in which
its value tends to infinite (thus “exploding”) [24, 25].

Long Short-Term Memory. Due to the length of the sequences considered
in the RUL estimation problem, the gradient issues affecting RNNs need to be
paid attention to; the LSTM Networks were introduced to mitigate such issues.
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The flow of information in an LSTM network is controlled by three gates, called
input, output, and forget. Moreover, two memory states, called hidden and cell,
are recurrently updated by the LSTM. In particular, the input gate decides
whether to update the cell state by using the current input, the forget gate
decides whether to keep or forget the information from the previous hidden
state, and the output gate decides how to update the hidden state given the
information stored in the cell state.

Gated Recurrent Unit. GRUs were introduced in [26] as a variant of the
LSTM networks architecture; in fact, GRUs have only two gates: the reset and
the update gate. Differently from LSTMs, GRUs do not possess a cell state,
and the reset gate is applied directly to the previous hidden state, therefore
performing a similar task as the input and output gates in LSTMs. It follows that
GRUs have less training parameters than LSTMs, thus using less memory and
executing faster; nonetheless, LSTMs may be more accurate on larger datasets.

Neural Turing Machine. The NTM was originally proposed in [10] and
later applied to the predictive maintenance field in [22, 8]. It is inspired by classi-
cal Turing Machines: in fact, it comprises a tape-like memory and updates it by
means of read and write operations which are guided by a controller. Differently
from LSTMs and GRUs, the NTM has an array of memory vectors, therefore
enlarging its mnemonic capabilities and possibly reducing the likelihood of over-
writing previously learnt concepts. This is also made possible by the usage of
learnable read and write operations, which consider contextual information to
decide which locations to use and to which extent the information contained
therein should be updated.

4 Experimental Results

4.1 Analyzed dataset

The PHM Society 2020 Data Challenge (PHM20) [11] public dataset is used
to perform the experiments because it offers sensor measurements comprising
failures in a particle filtration system, which is often used in food and beverage
manufacturing, pharmaceutical industries, etc. In this dataset, the measurements
come from an experimental rig. Contaminants in the liquids passing through the
system may clog it, and the challenge objective is to anticipate when such an
occurrence will happen. In particular, the clogging can be identified when the
pressure difference is higher than 20 psi. Each of the 32 experiments (24 for
training, 8 for validation) in the dataset include concentration (40%-47.5%) and
size (45-53µm, or 63-75µm) of the contaminant particles, and are thousands of
steps long with a sampling rate of 10 Hz. For each time step, three measurements
are taken: flow rate, upstream and downstream pressures. In addition, we also
consider the concentration value and the size of the particles. In this work, the
RUL is 0 when the pressure difference becomes higher than 20 psi for the first
time. Finally, we use the validation experiments as the test data, and further
split the training data with an 80/20 ratio to create a validation set.



Estimating RUL via Neural Sequence Models: a Comparative Study 5

Temp. ctx 30 45 60 70 140 210 280 350

RNN 9.3/6.5 9.4/6.7 8.3/5.7 9.2/6.4 9.8/6.8 11.1/8.5 10.7/8.0 11.1/8.0
LSTM 10.4/6.8 10.3/6.8 7.0/4.8 9.3/6.3 7.5/5.2 8.4/5.6 10.2/7.3 8.1/5.8
GRU 9.0/6.2 6.9/4.7 6.6/4.3 7.8/5.5 6.2/4.4 6.9/4.6 5.9/4.5 6.2/4.5
NTM 9.0/5.8 7.3/4.6 7.1/4.5 6.8/4.4 6.7/4.5 5.5/3.7 5.4/3.7 6.9/5.0

Table 1. 5-runs average RMSE/MAE values on the test set. Overall best is underlined.

4.2 Training settings and model evaluation

The experiments are performed using PyTorch 1.7.1. With our hardware (RTX
A5000 and i7-9700K), a training run takes around 50 minutes for the NTM,
for which a CUDNN implementation is not currently available, and 6-8 minutes
for the other models. We used the following hyperparameters: batch size 100,
learning rate 5e-3, 64 neurons in the MLP, and all the hidden sizes are set to 64.
In this study, the Root Mean Square Error (RMSE) and the Mean Absolute Error
(MAE) were chosen to assess the prediction accuracy of each of the sequence
models. A key difference consists in the higher sensitivity of RMSE when it
comes to prediction errors which highly deviate from the mean value.

4.3 Quantitative comparison

Since sequence models perform the prediction based on a sequence of obser-
vations, varying the size of such a temporal context may highly influence the
prediction error. Therefore, an experiment is conducted by using different sizes
for it. Three observations can be drawn from Table 1. Firstly, by using shorter
contexts, e.g. 30-45, which likely lack of crucial information, all the models make
unstable predictions, leading to high RMSE. Secondly, by increasing it, more
information is likely to be found, and the prediction error steadily decreases.
In particular, by modelling the sequences with a GRU or a NTM and using a
context of 280 steps, the lowest error is achieved (5.9 RMSE and 4.5 MAE, and
5.4 RMSE and 3.7 MAE). Lastly, while really long sequences may contain addi-
tional and potentially useful information, they are also harder to be modelled:
as a consequence, the prediction error increases.

4.4 Qualitative analysis

Figure 2 compares the prediction made by the four models (context of 280) on
a full experiment from the test set (groundtruth shown in red). It shows that all
the models are highly precise when the RUL is close to 0, indicating that the
fault is evident by looking at the sensor measurements. Conversely, the farther
from the fault, the higher the uncertainty: this clearly indicates the difficulty of
anticipating such an event, although the GRU and the NTM are quite precise,
especially if compared to the noisy predictions made by the RNN and the LSTM.
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Fig. 2. Predictions made by the four models on a full experiment from the test set.
RMSE and MAE values are shown below. Best viewed in color.

5 Conclusions

Being able to predict when a fault may occur in a industrial machine is fun-
damental. To achieve this goal, a precise predictive model is required and the
availability of historical data often shifts the attention to data-driven method-
ologies, and in particular to the use of deep learning techniques to automatically
extract useful features from raw sensor measurements. Given that faults develop
over time, in this study we investigated the predictive capabilities of several neu-
ral sequence models in a particle filtration system. Quantitatively, we observed
that all the models achieve modest prediction accuracy, although the GRU and
the NTM perform better than the others. Considering that these models are
designed with a lot of care on the technique used to access their memory state,
further research is needed to improve the operations used to access and update
the memory, while at the same time strive for more attention on the contents
put into it. Qualitatively, we presented evidence that all the models are accu-
rate when the fault is close, but they become more and and more uncertain the
farther it is. Consequently, neural sequence models may become aware of a fault
when it is far too close, therefore it may be difficult to perform a preemptive
action. Therefore, future work may also focus on improved training procedures
which put more emphasis on detecting when the fault starts to develop, which
represents a critical point for a predictive system. Finally, Transformer-based
approaches [27] could also be used for future research on RUL estimation.
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