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Figure 1: Overview of the proposed text-to-metaverse retrieval problem: given a textual query, the output is a ranking list of
metaverse scenarios arranged in descending order according to relevance. Details in Section 3.

ABSTRACT
In recent years, the metaverse has sparked an increasing interest
across the globe and is projected to reach a market size of more
than $1000B by 2030. This is due to its many potential applications
in highly heterogeneous fields, such as entertainment and multi-
media consumption, training, and industry. This new technology
raises many research challenges since, as opposed to the more tradi-
tional scene understanding, metaverse scenarios contain additional
multimedia content, such as movies in virtual cinemas and operas
in digital theaters, which greatly influence the relevance of the
metaverse to a user query. For instance, if a user is looking for
Impressionist exhibitions in a virtual museum, only the museums
that showcase exhibitions featuring various Impressionist painters
should be considered relevant. In this paper, we introduce the novel
problem of text-to-metaverse retrieval, which proposes the chal-
lenging objective of ranking a list of metaverse scenarios based on
a given textual query. To the best of our knowledge, this represents
the first step towards understanding and automating cross-modal
tasks dealing with metaverses. Since no public datasets contain
these important multimedia contents inside the scenes, we also
collect and annotate a dataset which serves as a proof-of-concept
for the problem. To establish the foundation for it, we implement
and analyze several solutions based on deep learning, whereas to
promote transparency and reproducibility, we will publicly release
their source code and the collected data.
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1 INTRODUCTION
The term ’metaverse’ refers to a hypothetical virtual universe blend-
ing synthetic and digital elements with the real world [36]. To do
so, it is facilitated by Web technologies and ’extended reality’, an
umbrella term encompassing virtual, augmented, and mixed reality
technologies [25, 36]. The rapidly developing metaverse market, is
currently valued at $65B, and is projected to exceed $1000B by 2030
[6]. As a result, the metaverse represents a new frontier of digital
experiences, providing immersive environments with a multitude
of applications, including education, industry, and entertainment
[11, 47]. For example, users can socialize in engaging environments
using applications like VRChat1 and Meta Horizon World2, or doc-
tors can simulate complex surgical procedures in fail-proof environ-
ments like MetaMedicsVR3. In particular, we are seeing a significant
growth in metaverses related to entertainment and art, which are
increasingly used as platforms to explore our shared history. These

1https://hello.vrchat.com/
2https://www.meta.com/it/horizon-worlds/
3https://metamedicsvr.com/
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include historical site visits (e.g., VersaillesVR4, The Anne Frank
House VR5), digital museum tours (e.g., Musée Dezentral6, VOMA7,
Museum of Crypto Art8), and even creating personalized art in
virtual environments (e.g., Painting VR9, Vermillion10). The emer-
gence of new metaverses necessitates advanced retrieval methods,
similar to the trend that led to Google Images and YouTube search
engines for user-generated content.

Unlike other forms of media such as images, videos, and 2D
and 3D scenes, metaverse scenarios present a more complex and
challenging environment due to their richness in multimedia ele-
ments, and their dynamic nature. These characteristics introduce
new challenges and necessitate understanding from both the scene
and multimedia domains. For instance, distinguishing between a
car showroom metaverse and a digital museum may be accom-
plished by reasoning on scenario-level features, i.e., characteristics
extracted from scene understanding methods, though finer-grained
details (e.g., the absence of paintings in the former) also serve as
discriminators. Conversely, scenario-level features may not suffice
when comparing an Impressionist exhibition and a modern art
museum, thereby significantly elevating the importance of the mul-
timedia content present in the metaverse. Moreover, these contents
play a crucial role in relation to the dynamic nature of metaverses:
exhibitions at digital museums, for example, would often change
over time, and their relevance to user interests would therefore
vary. In light of these emerging challenges, in this paper, we define
the novel problem of retrieving metaverses based on user-defined
textual queries and introduce the task of text-to-metaverse retrieval.
Similar to other cross-modal retrieval tasks, this task requires rank-
ing a list of metaverses based on their semantic relevance to an
input textual query, as can be seen in Figure 1, yet assessing such
relevance is greatly influenced by the multimedia content present
in the scenarios. Additionally, since existing datasets are unsuitable
for the task due to their lack of multimedia content, we also col-
lected a dataset of over 3000 multimedia-enriched scenarios, each
paired with a textual description, to establish a proof-of-concept
and a benchmarking opportunity for the text-to-metaverse retrieval
task. Furthermore, we develop a deep learning-based framework for
this task and investigate different models, assessing and comparing
their performance.

Therefore, our major contributions can be summarized as fol-
lows:
• We define the problem of retrieving metaverse scenarios by
means of a natural language description, which requires an
understanding of both the scene and themultimedia contents
shown in it. It is a fundamental task to enhance and support
the search process done by the users to find a metaverse
which satisfies their needs;
• Since the scenes in previous public datasets do not contain
any multimedia content, we collect a dataset for benchmark-
ing purposes of this novel task, containing more than 3000

4https://en.chateauversailles.fr/news/life-estate/versaillesvr-palace-yours
5https://annefrankhousevr.com/
6https://musee-dezentral.com/
7https://www.voma.space/
8https://museumofcryptoart.com/
9https://www.paintingvr.xyz/
10https://vermillion-vr.com/

multimedia-enriched scenarios, and annotate each of them
with a textual description describing the furniture and their
positional relations, and the multimedia contents showcased
in it. The dataset is available on GitHub to promote research
on this topic;
• We design and develop a deep learning-based framework
to align the scene and multimedia features to their textual
counterpart. To support the reproducibility of the results,
we publicly released all the code on GitHub.

In Section 2 we describe previous research areas which are re-
lated to the metaverse and cross-modal retrieval. Section 3 intro-
duces the novel text-to-metaverse retrieval task and describes the
dataset we created, whereas the implemented methods are detailed
in Section 4. Several experimental results are proposed and dis-
cussed in Section 5. Finally, Section 6 concludes the manuscript and
proposes future research directions.

2 RELATEDWORKS
The research work related to the novel task of text-to-metaverse
retrieval can be divided into three macro areas. The first one is
focused on the recent advancements in metaverse-related research.
In the second one, we discuss the relations with the problem of
scene understanding although, as mentioned in the introduction,
metaverse scenarios pose a more challenging environment. In the
third one, we explore the relations of the proposed task to the cross-
modal retrieval task: in fact, since we aim to retrieve metaverses by
means of a natural language query, it is fundamental to model the
underlying interactions between the two modalities.

2.1 Research on metaverse
As metaverses become more immersive and consumer-level ex-
tended reality technologies become available, research on potential
applications and use cases is increasing. Many of the popular appli-
cations are related to virtual try-on and shopping [15, 54], digital
museums [12, 35], education [5, 17], and training, e.g., in surgery
[33] and industrial maintenance [53]. Moreover, even more com-
plex applications could be implemented by relying on digital twins,
which are digitalization of physical entities to which they are still
bonded, allowing for reciprocal influence in case any change is per-
formed on either of them [23]. For instance, applications related to
machine monitoring and fault prediction [4, 20] and smart health-
care of elder people [34, 40]. Noteworthily, all these applications are
supported by the advancements made in recent years in computer
vision, achieving more effective human pose estimation [52, 58],
semantic segmentation [9, 26], and object detection [37, 43].

However, to the best of our knowledge, no approach has been
developed to filter the metaverses based on their attributes, both in
terms of environment and multimedia content, and their suitability
for a given user query, so the users must perform the search by
themselves. To address this limitation, in this paper, we introduce
and address the task of text-to-metaverse retrieval.

2.2 Scene Understanding
Scene understanding aims at enabling machines to comprehend
and interact seamlessly with the real world, which has resulted in
considerable research interest due to its challenging environment
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and the direct impact on industry, and societal assistance, e.g., re-
lated to human-robots cooperation, autonomous driving cars, etc.
Computers need to be able to analyze the structure and layout of
a scene by processing diverse types of information from different
sources, such as multi-view images, 3D meshes, or point clouds, in
order to gain a deep understanding of a three-dimensional setting.
To address such a challenging problem, several sub-tasks which act
as building blocks for more complex applications were identified,
such as object detection [18, 60], segmentation [22, 56], depth es-
timation [48], and semantic understanding [27]. These important
advancements in scene understanding have a considerable impact
on real-world applications, such as autonomous driving [39] and
robotics planning [24]. Moreover, they were shown to be effective
in applications related to augmented reality [32] and virtual reality
[16], allowing for their use also in metaverse-related applications.

However, scenes and metaverses constitute different data types.
The former involves an environment comprising objects and fur-
niture, whereas the latter is an immersive scenario incorporating
a variety of multimedia content, such as visual artworks, and TV
programs. Due to this fundamental difference, in this paper, we
both introduce a novel and more challenging task and also collect a
proof-of-concept dataset, as existing datasets are unsuitable due to
their lack of multimedia content in the scenes. This dataset contains
multimedia-enriched scenarios along with detailed descriptions of
their furniture and the multimedia content within each scenario.

2.3 Cross-modal retrieval
Given the enormous amounts of content (e.g., videos, images, but
also metaverses) created and uploaded daily to the Internet, it is fun-
damental to be able to retrieve those relevant to the users’ interests
and filter out the irrelevant content. For instance, more than 500
hours of video are uploaded to YouTube every minute [7], and 95
million videos and images are uploaded to Instagram daily [44]. To
inform the search engine about what contents are relevant, includ-
ing metaverses, users formulate their needs by means of a natural
language query, therefore requiring cross-modal retrieval, i.e., a
search process across different data modalities. In fact, cross-modal
retrieval enables this task by means of techniques using one modal-
ity, typically text, to query a search engine and rank the elements
of the other modality, such as image, video, and audio, based on
their relevance to the query. Deep learning techniques are often
used to automatically discover complex relationships between the
inputs obtaining highly performing cross-modal retrieval methods,
e.g. when using text to retrieve videos [19, 42], images [10, 50], and
audio [31, 41]. These methods learn how to map the multimodal
inputs into a joint embedding space in which the representations of
paired inputs, e.g., images and its own textual description, are simi-
lar, i.e., close in the embedding space, resulting in efficient retrieval
via cosine similarity or other ranking functions. To learn the joint
embedding space, contrastive loss functions are used since they aim
at increasing the similarity for paired inputs while decreasing it for
unpaired ones [45, 51]. Inspired by these works, in this paper, we in-
troduce the novel task of text-to-metaverse retrieval and implement
a cross-modal retrieval method by building a joint text-metaverse
embedding space. Noteworthily, it is a novel problem since, to the
best of our knowledge, previous works on scene retrieval either

located the objects in the scene [46], the text shown inside them
[57, 61], or retrieved 3D scenes using 2D images [2, 3] or sketches
[65]. The closest work to our contribution are the SHREC 2018/2019
challenges [2, 3], yet there are two main differences: first, in SHREC
the queries are represented by images, making the approaches de-
veloped for it are less flexible and not directly usable in our setting,
as they require the user to own a picture of the desired metaverse;
second, the scenes in SHREC do not feature anymultimedia content,
making them unsuitable to represent metaverses. These limitations
in existing literature further motivate the collection of our dataset.

3 PROPOSED TASK: TEXT-TO-METAVERSE
RETRIEVAL

In this work, we propose a novel task which we name text-to-
metaverse retrieval, taking inspiration from recent advancements
in multimedia-related fields, which can be described as follows.
The data considered for this task is made of metaverse-description
pairs, D = {(𝑚1, 𝑑1), . . . , (𝑚𝑁 , 𝑑𝑁 )}, in which textual paragraphs
describe each of the metaverse scenarios by highlighting the mul-
timedia contents in it, e.g., static (paintings) and dynamic objects
(movies), and the many pieces of furniture which embellish the
environment (e.g., tables, beds, and TVs). The task objective is to
produce a ranking list of the metaverses based on their relevance
to the description which is used as a query: this means that, given
the description 𝑑𝑖 the resulting ranking list will be a permutation
of the metaverse scenarios, 𝜋 =𝑚𝜋1 , . . . ,𝑚𝜋𝑁 , which should have
the corresponding metaverse, 𝑚𝑖 , at its top rank, i.e., 𝑚𝜋1 = 𝑚𝑖 .
Nonetheless, it is interesting to note that multiple metaverses may
be at least partially described by the same query and that several
descriptions may be relevant for the same metaverse. Therefore,
for evaluation purposes it is recommended to use two types of
metrics: first, the recall rates and median rank, as is typically done
for other multimedia retrieval tasks, e.g., in text-to-image [38, 50]
and text-to-video retrieval [19, 59], which are used to quantify the
capabilities of a model to retrieve the correct ground truth element;
second, more complex metrics inspired from the information re-
trieval field, such as the Normalized Discounted Cumulative Gain
(nDCG), is considered since, as recently explained for text-to-video
retrieval [62], it may capture more complex behaviors related to a
higher level understanding of the semantics of the data. Further-
more, the opposite task, i.e., metaverse-to-text retrieval may also be
considered to obtain a holistic evaluation of the model performance.

3.1 Dataset collection
To address the novel text-to-metaverse retrieval task, we gathered
a large-scale set of metaverse-description pairs. Considering that
metaverses can be seen as scenes with additional multimedia con-
tent in them, we looked for suitable datasets in the previously pub-
lished literature on scene-related topics. However, none of them
featured the multimedia aspect, making them unsuitable for the
proposed task and therefore motivating the collection of our dataset.

3.1.1 Metaverse scenarios. Inspired by the amount of metaverses
which recreate the houses of important people of the past, we
decided to reuse already available data by gathering 3384 profes-
sionally designed indoor scenarios from the 3D-front dataset [21],
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Figure 2: The floor plans of some of the sample scenes

thereby including a diverse range of furniture and object types com-
monly found in indoor environments, such as beds, wardrobes, ta-
bles, cabinets, and TV-stands. However, as mentioned before, these
scenes do not feature multimedia content. Therefore, to simulate
the presence of multimedia content in these metaverse scenarios,
we included a video along with a TV placed on suitable objects
such as “TV stands” or “tables”. Specifically, we picked the visual
content from a subset of 25 randomly-picked YouCook2 videos [66]
and uniformly distributed them into the metaverses under analysis.
We chose to use videos as a form of multimedia content because
recreated houses from the past often feature educational videos to
inform the visitors about the previous dwellers and their life, habits,
and historical context. In the 2 the floor plans of some of the 3d
scenes used in this work can be seen.

3.1.2 Textual descriptions. To provide a textual description for each
of the metaverses, we use the category (e.g., “Table”, “Sofa”, etc),
style (e.g., “Japanese”, “Modern”, etc), theme (e.g., “Lines”, “Smooth
Net”, etc), and material (e.g., “Wood”, “Leather”, etc) annotations
provided with the 3D-front dataset. To do so, we first prepare three
sets of sentences, O, P, andV , automatically. In the first set, each
metaverse scenario is described by several sentences capturing the
existing objects’ features separately. For instance, a sentence in this
set may look like this: “This room contains two Composite Smooth
Net Japanese Dining Tables”. In the second set of sentences, P,
we capture the distance between existing objects in each scenario,
indicating how far or how close two objects are in a scene based
on the standard deviation of the distribution of distances across all
scenes. For instance, “Solid Wood Japanese Nightstand is close to
the Smooth Leather Lines Modern Multi-seat Sofa”. In the final set,
V , the visual contents of the video are described by means of the
captions present in the video dataset and further preprocessed. In
particular, the spaCy library [1] was used to make the captions more
harmonious with the previous sentences: to do so, we detect the
verbs by using spaCy’s part-of-speech tagger and then adapt them
to the context. This means that after this additional preprocessing,
for example from the caption “cut jalapeno peppers and remove the
seeds” we obtain the sentence “This room contains a TV showing
cutting jalapeno peppers and removing the seeds”. Ultimately, we
obtain the final description as a concatenation of the three, that is
𝑑𝑖 = [𝑜𝑖 , 𝑣𝑖 , 𝑝𝑖 ], resulting in a list of sentences per metaverse whose
length ranges from 6 to 68 (17.5 on average). An overview of the
statistics of the textual annotations can be seen in Figure 3.

Figure 3: Distribution of the number of sentences per scene
in the train, validation, and test splits.

4 PROPOSED METHOD
To address the text-to-metaverse retrieval task, we propose amethod
which uses deep learning to first extract a representation both for
the metaverse and the associated description, and then to increase
their similarity in a cross-modal embedding space. By doing so,
it will be possible to search and rank the scenes by mapping the
query into the same embedding space using the functions learned
at training time. An overview of the proposed method is shown
in Figure 4. As mentioned in Section 3, we consider a dataset D
composed of metaverse scenarios and associated descriptions (the
details can be found in Section 3.1).

Considering that metaverses can be seen as a scene with ad-
ditional multimedia content, we decided to first model these two
sources of information separately and then fuse the acquired knowl-
edge. To model the metaverse scenario, we use an Auto Encoder-
based approach based on recent advancements in scene represen-
tation learning via deep Variational Auto Encoder (VAE) [64]. In
fact, in recent years deep Auto Encoders were often used to auto-
matically learn compact yet highly discriminative representations
for scenes [30, 64] and also other types of data, including video
[8, 63] and audio [14, 49]. In particular, we use a pre-trained VAE
[64] to obtain the representation 𝜙𝑆 for the scenario, whereas the
representation 𝜙𝑉 for the video is obtained through an Auto En-
coder, which is learned on top of the visual features extracted from
a pre-trained deep neural network, S3D [45]. The autoencoder is
defined as follows:

𝜙𝑣1 = 𝑡𝑎𝑛ℎ(𝑊𝑣1𝜙𝑣0 + 𝑏𝑣1 )
𝜙𝑉 = 𝑡𝑎𝑛ℎ(𝑊𝑣2𝜙𝑣1 + 𝑏𝑣2 )

where 𝜙𝑣0 is the deep representation for the video, and𝑊∗, 𝑏∗ are
trainable weights and biases.

The two representations are then concatenated, resulting in 𝜙𝑀 ,
and combined together by using a fully-connected network, named
FCNet, as follows:
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This metaverse contains a striped 
modern multi-seat sofa, a beige 
armchair, … The sofa is close to the 
table. The armchair is also close to 
the table. … The TV shows a brown 
cat jumping across the trees …

…
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…

…

…

…
…

…
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representation

…

x1 x2

…

…
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Figure 4: Overview of the proposed method. Details in Section 4.

𝜙𝑚1 = 𝐵𝑁 (𝛿1 (𝑅𝑒𝐿𝑈 (𝑊𝑓1𝜙𝑀 + 𝑏 𝑓1 )))
𝜙𝑚2 = 𝐵𝑁 (𝛿2 (𝑅𝑒𝐿𝑈 (𝑊𝑓2𝜙𝑚1 + 𝑏 𝑓2 )))

𝜌𝑀 =𝑊𝑓3𝜙𝑚2 + 𝑏 𝑓3

where𝑊∗, 𝑏∗ are trainable weights and biases, 𝛿∗ (·) represents the
dropout operator, 𝐵𝑁 (·) identifies the use of Batch Normalization
[28], and 𝜌𝑀 ∈ R1×𝐷 is the descriptor obtained for the metaverse,
which is then used to perform the learning.

Given that a metaverse scenario may be highly complex and
detailed, describing it may lead to a paragraph made of many sen-
tences, e.g., more than 50 sentences as in our dataset (see Section
3.1). Therefore, extracting discriminant descriptors from these para-
graphs containing several thousands of tokens may become difficult
even for highly performing methods which are often limited in the
number of tokens they can process, e.g., 512 for BERT. To this end,
we designed the following method, consisting of two major steps.
First, we obtain a list of𝑀 shorter sentences, each with a maximum
of 512 tokens, by using the periods as a splitting point and extract-
ing for each of them a sentence embedding using BERT, obtaining
𝜙𝑇 ∈ R𝑀×768. Second, a neural sequential model is used to capture
temporal relations between them, resulting in a single descriptor,
𝜌𝑄 ∈ R1×𝐷 . Specifically, to implement this model, several deep
learning architectures were considered and thoroughly tested (see
Section 5). First, we include a simple approach based on mean

pooling, which we defined by the following operations:

𝜙𝑇𝑎 =
1
𝑀

𝑀∑︁
𝑖=1

𝜙
(𝑖 )
𝑇

𝜌𝑄 =𝑊𝑡𝜙𝑇𝑎 + 𝑏𝑡
in which we first compute the average of the sentences, 𝜙𝑇𝑎 , fol-
lowed by a trainable linear transformation. Then, considering that
sequential patterns may lie hidden in the list of descriptions, Gated
Recurrent Units (GRU) [13] represent a possible way to discover
them: therefore, we both consider a GRU solution, in which the
last hidden state,

→
ℎ , is used as the final embedding, and a more

sophisticated bidirectional GRU, in which the mean of
→
ℎ and

←
ℎ

is taken. A final solution is based on Multi-head Self-Attention
[55], which uses the attention mechanism in place of the recurrence
used by the GRU to attend each sentence to a different degree. Then,
the description’s final embedding is computed by summing up the
sentence representations weighted by their attention scores. This
is done by using 𝜙𝑇 as the Q, K, and V in the following equations:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 ) = [head1, . . . , headℎ]𝑊 𝑜

head𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 )

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞, 𝑘, 𝑣) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( 𝑞𝑘
𝑇√︁
𝑑𝑘

)𝑣

where [] represents a concatenation, and𝑊𝑄

𝑖
,𝑊𝐾

𝑖
,𝑊𝑉

𝑖
are trainable

weights.
To perform cross-modal retrieval, a contrastive learning ap-

proach is often used to learn a joint embedding space in which
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the distance between corresponding feature vectors of metaverses
and descriptions is minimized, while that of unrelated ones is max-
imized. By doing so, it is possible to form a new query by means of
a natural language description, then mapped into the same embed-
ding space, and used to rank the metaverses by using a similarity
metric, such as the Euclidean distance. In particular, to train all of
the models we used the triplet loss [51], defined as follows:

L(𝑎, 𝑝, 𝑛) =𝑚𝑎𝑥 (0,Δ + 𝑠 (𝑎, 𝑛) − 𝑠 (𝑎, 𝑝))

L =
1

2 · 𝑁 · (𝑁 − 1)

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1, 𝑗≠𝑖

L(𝜌𝑄𝑖
, 𝜌𝑀𝑖

, 𝜌𝑀𝑗
)

+ L(𝜌𝑀𝑖
, 𝜌𝑄𝑖

, 𝜌𝑄 𝑗
)

where Δ is a fixed margin, and 𝑠 (·, ·) is the cosine similarity.

5 EXPERIMENTAL RESULTS
To examine the performance of the proposed methodology in text-
to-metaverse retrieval task, we use the dataset described in Section
3.1. As mentioned before, it contains more than 3300 indoor scenar-
ios containing different kinds of objects among twenty categories,
like beds, wardrobes, tables, cabinets, and TV-stands, alongside the
multimedia content which is shown in it.

In the training procedure, we used 70% of the data for the train
set, while two 15% proportions were considered for validation and
test sets. The main task addressed in this paper is to obtain a model
capable of retrieving metaverses based on textual information, i.e.,
a text-to-metaverse model; however, to have a holistic evaluation
of the performance, we also consider the metaverse-to-text task. As
mentioned in Section 3, given a textual query (respectively, a meta-
verse) we consider two types of metrics. First, we use metrics which
solely seek to measure the performance of the model in retriev-
ing the groundtruth, including the recall at k, R@k, which aims
at measuring how many times the groundtruth metaverse (resp.,
description) is located in the top k positions of the output ranking
list, and theMedian Rank of the groundtruth. Secondly, we also
consider a metric which quantifies the quality of the output ranking
list, that is we adopt the Normalized Discounted Cumulative Gain,
nDCG [29], to estimate how close the ranking list is to the optimal
one, which ranks the metaverses (resp., descriptions) following
a descending relevance degree. When nDCG@10 is reported, it
means that the nDCG is only computed for the first 10 relevant
metaverses (resp., descriptions) and not for all the relevant ones.
Specifically, we represent both the metaverse and the query with
a list of their objects, relations, and video. Then, if the metaverse
contains at least half of the characteristics existing in the query, it
is considered relevant to the query itself.

5.1 Implementation details
In our implementation, the dropout rates of 𝛿1 and 𝛿2 were empiri-
cally set to 0.2 and 0.15, respectively. The margin used to separate
the groundtruth metaverse-description pair and the other elements
in the embedding space was set to Δ = 0.25. The optimizer used
is Adam with default parameters. The learning rate was initially
set to 0.008 and then reduced by 25% after 27 epochs. The training
lasts 50 epochs, with a batch size of 64, after which we select the
best-performing model on the validation set.

Figure 5: Text-to-metaverse R@10 performance achieved on
the validation set by each of the models under analysis. More
details in Section 5.2.

In experiments, we set 𝐷 = 400 because by using the pre-trained
VAE published by Yang et al. [64] we obtain a feature vector of size
200 and similarly we used the same size also for the representation
of the video, can be obtained using of the autoencoder detailed in
Section 4. In the Self-Attention model, we used ℎ = 16 heads.

All the experiments were performed using a machine running
an RTX A5000 GPU, 16 GB of RAM, and an Intel Xeon E5-1620. We
used PyTorch 1.12.1 to implement the deep learning algorithms,
whereas spaCy 3.1 was used for sentence processing. The source
code and data are publicly available. 11

5.2 Baselines comparison
As a first experiment, we compare the chosen baselines, in order
to understand which model is best suited for the proposed task.
On the validation set (Figure 5), it rapidly becomes clear that the
bidirectional GRU model (green) achieves the best overall results,
keeping a margin of around 9-10% in R@10 over the monodirec-
tional GRU (orange). This result is also confirmed on the test set
(Table 1), indicating both the effectiveness of the GRU-based model
and of the bi-directionality, which helps in understanding the rela-
tions between the sentences forming the metaverse description. In
fact, it can be seen that the bidirectional GRU model achieves 68.5%
R@10 on the text-to-metaverse task, with a margin of around 10
points over the monodirectional one (59.6%). This may be due to the
fact that the descriptions are quite long and being able to process
them in both directions could lead to more relations discovered
in the data, as opposed to using a single direction. Moreover, the
lower performance of the Self-Attention model may be interpreted
as the lack of enough data to train it properly.

As a further comparison, we explore the performance of the four
models, measured with text-to-metaverse R@10, considering the
length, i.e., the number of sentences, of the query description. The
results are available in Table 2. As previously shown in Figure 3,
most of the queries have between 10 and 19 sentences (10-19 range),
11https://github.com/aliabdari/Metaverse_Retrieval
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Table 1: Evaluation on the Test Set for the whole descrip-
tions matching. T-to-M represents the text-to-metaverse task,
whereas the opposite direction is captured byM-to-T. See Sec-
tion 5.2 for the details.

Mean Self-Attention GRU BiGRU

T-
to
-M

Recall@1 3.0 5.1 22.6 28.0
Recall@5 11.0 19.3 44.9 55.6
Recall@10 21.3 30.7 59.6 68.5

Median Rank 32.0 23.0 7.0 4.0

M
-t
o-
T

Recall@1 3.9 3.9 22.8 26.8
Recall@5 13.9 17.1 45.8 55.9
Recall@10 24.8 29.1 58.5 68.3

Median Rank 28.5 24.0 7.0 4.0
NDCG@10 2.9 4.2 16.7 19.6
NDCG entire 2.7 4.0 16.1 19.0

Table 2: Performance of the four models considering the
length of the query description. Details in Section 5.2.

Text-to-Metaverse R@10
Range Mean Self-Attention GRU BiGRU # samples
0-9 25.0 29.2 79.2 83.3 24
10-19 28.8 18.1 67.2 73.9 375
20-29 28.4 29.5 75.8 83.1 95
30-39 23.1 23.1 69.2 61.5 13
40-49 100.0 0.0 0.0 0.0 1

in which can be seen that the Bidirectional GRU model performs
better than others; moreover, the Self-Attention performs worse
than the simpler Mean pooling model. Considering the other ranges,
it can be seen that there are situations in which the Self-Attention
outperforms theMean pooling (0-9, 20-29); the GRU performs better
than its Bidirectional version in the 30-39 range, however, there are
not enough samples (13) to make a conclusive statement.

5.3 Style, theme, and material queries
Looking for metaverses which follow a certain theme, e.g., a formal-
looking scenario which is best suited for a business meeting, could
be one of the more commonly used applications. To benchmark
the performance of the considered models in a similar situation,
we introduce a template for the queries which resembles what a
user could have in mind. It has the following form: “I am looking
for a scenario which follows a 𝑥 {style | theme | material}”, where 𝑥
is an instance of either style, theme, or material, which represent
respectively the style followed by the furniture (e.g., 𝑥 could be
“Japanese” ones are often simple and minimalist, with earthy col-
ors; whereas “Chinoiserie” use brighter colors, with shades of red
and gold, and are decorated by more intricate patterns), the most
prevalent type of patterns displayed on the furniture (e.g., “Lines”
or “Striped Grid”), and the material used to build them (e.g., “Wood”
or “Metal”). Overall, a total of more than 700 queries is obtained.
In this experiment, since the query solely contains a single style,
theme, or material, we consider a metaverse to be relevant to the
query if at least half of its components satisfy the query. The results

Table 3: Evaluation of the style, theme, and material queries.
More details in Section 5.3.

Style/Theme/Material to Metaverse
Mean Self-Attention GRU BiGRU

Recall@1 1.4 7.1 8.4 19.3
Recall@5 50.1 60.3 48.5 70.8
Recall@10 62.8 60.3 83.3 92.5
NDCG@10 13.7 21.4 12.3 15.0
NDCG entire 20.4 24.2 19.8 20.3

are reported in Table 3. The model based on the bidirectional GRU
achieves the best results in retrieving the groundtruth, obtaining
far better R@1 (19.3% compared to less than 8.4% of the GRU) and
R@5 (70.8% compared to 60.3% obtained by the Self-Attention) than
the other models. However, when considering the overall quality
of the ranking lists, it can be seen that the nDCG reported by the
Self-Attention is higher than the others (21.4% nDCG@10 and 24.2%
nDCG compared to 15.0% and 20.3% of the bidirectional GRU). No-
tably, the queries used in this experiment are designed to be entirely
different than the descriptions used at training time. Therefore, the
results show that the model trained with descriptions performs
reasonably well (e.g., R@1 of 19.3% in Table 3 compared to 28.0% in
Table 1) even when using queries resembling human-written ones,
showing a good generalization ability.

5.4 Experiment about video queries
A promising application for a text-to-metaverse retrieval method
is to facilitate the identification of metaverses featuring multime-
dia content associated with a particular individual, creating an
immersive environment that evokes that person’s life and work.
For example, if we consider a painter like Van Gogh, we would
expect to see reproductions of his paintings as well as elements
that may have inspired him, such as flowers or fruits. In our setting,
we used videos as the main multimedia element present in each
metaverse. Therefore, in this experiment, the queries follow the
form “I look for a room in which the TV showing 𝑥”, where 𝑥 is the
description of the content of a video. In this case, the relevant meta-
verses are those which contain the exact video mentioned in the
query. Moreover, we altered the dataset by increasing the number
of videos which are selected and distributed across the scenarios
from 25 to 500. According to the results reported in Figure 6, it can
be seen that with 25 videos the Mean and Self-Attention models
are more effective at retrieving the metaverses which play a given
video. As the number of videos increase, the performance of these
two models decrease in favor of those based on GRU. It should be
noted that the training procedure was not specifically optimized
to improve the performance on this particular task, as its focus
was on using descriptions, which contain multiple sentences about
furniture and a single one about multimedia content, to retrieve
metaverses. Therefore, it is possible that allocating more resources
to this task (e.g., by giving more importance to the contents of the
multimedia data in the description) could lead to better results.
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Figure 6: Recall@10 on the test set using a variable amount
of videos in the metaverses under analysis. More details in
Section 5.4.

6 CONCLUSION
With rapid technological progress in digital capabilities, an increas-
ing interest is directed towards themetaverse and its many potential
applications, ranging from entertainment and multimedia consump-
tion, e.g., digital museums, to industrial and academic training, e.g.,
realistic looking environments where students and doctors can
practice complex surgery procedures. Due to the ever-growing
number of metaverses, there is an emergent need for advanced
methods capable of retrieving the metaverses which best fit the
users’ needs. Therefore, in this paper, we introduced the novel task
of text-to-metaverse retrieval, inspired by the recent advancements
in cross-modal retrieval. To the best of our knowledge, such a re-
search task has not been addressed either for metaverses or for
3D scenes, which can be seen as a less challenging scenario since
they are not as multimedia-enriched as metaverse scenarios. In fact,
the multimedia content present in the metaverse greatly influences
its relevance to a user query, e.g., when trying to discriminate a
modern art exhibition from an Impressionist one. To support re-
search on this task, we collected a benchmark dataset consisting of
more than 3000 metaverse-description pairs, since existing datasets
do not contain multimedia-enriched scenes. Additionally, we de-
veloped a deep learning-based framework which we thoroughly
tested with several experiments. In our experiments, we observed
that using a bidirectional GRU on top of the sentence embeddings
leads to better retrieval results when compared with three other
models. When varying the type of query (style, theme, material
query, or the query about the multimedia content) we observed a
different behavior, which showed that also a simpler Mean pool-
ing of the sentence embeddings can lead to a better quality of the
ranking lists. Overall, both these results show that there is room for
improvement, especially in the quality of the ranking lists, which
needs to be significantly improved in order to achieve satisfactory
results for the user.

Given the novelty of the task, there are several research direc-
tions which could be addressed. First, there is a lack of public
datasets, which greatly limits the advancement in metaverse-related
research. Therefore, collecting and releasing public datasets could
be useful both for more general studies and for application-oriented
ones, e.g., metaverses covering specific sectors such as art and en-
tertainment. Second, in our setting, we relied on recent approaches
based on deep Auto Encoders to extract the representation for the
scenes. However, by representing the scene as a set of multiple
views images, recent vision-and-language approaches [50] could

be also used to solve this task: we reserve this research direction
as future work. Moreover, our solution currently models the meta-
verse and its multimedia separately, possibly neglecting potential
interactions between them. Therefore, future works should also
investigate how to model them jointly.
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