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Abstract 
An original methodology, called backward model 
tracing to model student performance which features 
a profitable integration of the bug collection and bug 
construction techniques is presented. This 
methodology has been used for building the 
modelling module of a new version of ET (English 
Tutor), an ITS aimed at supporting the learning of 
the English verb system. Backward model tracing is 
based on the idea of analyzing the reasoning process 
of the student by reconstructing, step by step and in 
reverse order, the chain of reasoning (s)he has 
followed in giving his/her answer. In order to do 
this, both correct domain specific knowledge and a 
catalogue of stereotyped errors (mahules) are utilized. 
When the system is unable to explain the student 
behavior by exploiting its previous knowledge, new 
malrules are generated dynamically, by utilizing 
explanation-based learning techniques. The overall 
process is based on a deep modelling of the student 
problem solving and the discrimination among 
possible explicative hypotheses about the reasons 
underlying the student behavior is carried on non- 
monotonically through a truth maintenance system. 
The proposed approach has been fully implemented 
in a student modelling module developed in 
PROLOG. 

I. Introduction 
One of the most important features an intelligent tutoring 
system (ITS for short) should provide, is the capability to 
adapt its behavior to the specific traits of the student. To 
this purpose, a fundamental contribution is given by the 
component aimed at building and maintaining the student 
model. The student model describes the knowledge and 
beliefs of the student in the specific subject domain and is 
used for designing and taking appropriate tutorial and 
remedial actions, tailored to the peculiarities of the 
student. 
Building an ITS with a student modelling component is 
hindered by several problems concerning both theoretical 
and practical issues. There is a sufficiently general 
agreement on the fact that the modelling activity cannot be 
based only on the knowledge provided by an expert in the 
domain but it is better performed by relying on an explicit 
description of possible student (mis)behaviors. 
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Unfortunately, no agreed-upon solution exists on this 
topic and the three main approaches adopted for building 
student modelers (i.e., overlay, bug collection and bug 
construction: Wenger 1987) directly reflect this situation. 
In fact, each technique has been generally used alone and 
no clear ways have been proposed to combine these 
techniques in order to exploit their respective advantages. 
Considered by itself, each technique has known drawbacks 
and falls short of constituting an ideal tool for building 
cognitively adequate and computationally sufficient student 
models: overlay is generally considered as not sufficiently 
powerful to perform sophisticated modelling, collecting 
catalogues of bugs is notoriously a dull and labor- 
intensive endeavor, while bug construction has not yet 
proved to be a reliable and sufficiently comprehensive 
approach. 

In this paper we present an original methodology, called 
backward model tracing to model student performance 
which features a profitable integration of the bug 
collection and bug construction techniques. This 
methodology has been used for building the modelling 
module of a new version of ET (English Tutor), an ITS 
aimed at supporting the learning of the English verb 
system. Backward model tracing is based on the idea of 
analyzing the reasoning process of the student by 
reconstructing, step by step and in reverse order, the chain 
of reasoning (s)he has followed in giving his/her answer. 
In order to do this, both correct domain specific knowledge 
and a catalogue of stereotyped errors (malrules) is utilized. 
When the system is unable to explain the student 
behavior by exploiting its previous knowledge, new 
malrules are generated dynamically, by utilizing 
explanation-based learning techniques. 

The overall process is based on a deep modelling of the 
student problem solving and the discrimination among 
possible explicative hypotheses about the reasons 
underlying the student behavior is carried on non- 
monotonically through a truth maintenance system. 

Backward model tracing seems a promising approach to 
tackle the hard problem of student modelling (Self 1988) 
for the following reasons: 
- it shares the benefits of the model tracing methodology 

(Anderson 1987); 
- it exploits the respective advantages of bug collection 

and bug construction without the limitation of the 
exclusive usage of a single technique; 
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Figure 1. The tense generation process. 

- it exploits a sophisticated technique such explanation- 
based learning to push the limits of the bug construction 
methodology. 

The paper is organized as follows: The following section 
briefly presents the ET system where backward model 
tracing has been applied. Section 3 illustrates the general 
criteria upon which the methodology is grounded. Section 
4 and 5 describe the technical details of the modelling 
process focusing on the generation of explanatory 
hypotheses about the causes of the student erroneous 
behavior and on the discrimination among the formed 
hypotheses, respectively. Section 6 presents the conclusions 
of the work. 

2. Second Language Tutoring in ET 
The backward model tracing methodology has been utilized 
in the new version of the ET system (Fum, Giangrandi, & 
Tasso 1988), an ITS aimed at supporting Italian students in 
the learning of the English verb system. ET comprises an 
articulated knowledge-based domain expert (Fum, 
Giangrandi, & Tasso 1989), devoted to tense generation, 
capable to solve fill-in exercises constituted by one or more 
sentences in which some verbs have to be conjugated into 
the appropriate tenses. The operation of the domain expert 
is organized around a sequence of five phases (illustrated in 
figure l), each devoted to a specific (sub)process, namely: 
- parsing the exercise sentence(s); 
- recognizing the temporal relations among the events 

described in the sentence(s); 
- identifying the reference time for every clause in the 
, sentence(s); 
- selecting the correct tense to be used for each verb; 

- conjugating the verb(s) into the appropriate tense. 
Each process is carried out by a dedicated processor, which 
is supported by a knowledge base encoding the knowledge 
usually exploited by humans for that subtask. The main 
representation paradigm utilized in the knowledge bases is 
constituted by production rules. The generation expert 
produces also a precise track of the reasoning performed and 
of the knowledge utilized for solving the exercises. 

The second fundamental module of ET is the tutor which 
is devoted to define the modalities of the teaching activity. 
More particularly, the tutor assigns the exercises according 
to a given syllabus, cooperates with the modeler in order to 
discriminate among alternative hypotheses about the student 
erroneous behavior, and manages the dialogue with the 
student. 

The student modeler is the module which implements the 
backward model tracing methodology. The general goal of 
this module is to discover the domain specific knowledge 
the student has utilized in order to derive her/his answer(s). 
The modelling process aims at constructing a model of the 
students beliefs in which both correct knowledge and 
misconceptions are explicitly represented. The student 
model, which is partitioned into different parts, one for each 
computational phase, contains therefore a collection of 
facts and rules that have been utilized in order to interpret 
the student behavior and that are supposed to mirror what 
the student knows/beliefs about the subject domain. The 
student model supplies the basis for remedial activity which 
is aimed at correcting the student misconceptions. The 
structure and the functioning of this module constitutes the 
subject of this paper. 
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3. Modelling Student Performance 
Backward model tracing relies on two basic assumptions: 
(i) in achieving the solution, the student follows a process 

akin to that used by the expert module i.e., it goes 
through the same phases and performs essentially the 
same kind of computations, and 

(ii) the student mistakes can be modelled by appropriately 
perturbing the knowledge utilized by the expert module. 

Some words are needed in order to justify these 
assumptions. It could be claimed that assumption (i) is 
unrealistic: in fact it is easy to find evidence that novices 
solve problems by using strategies that are different from 
those utilized by experts (e.g., diSessa 1982; Reif 1987). 
While this cannot be denied, it is also true that, in order to 
be able to model possible student misbehaviors, a model of 
the correct performance is required. The student behavior 
needs thus to be compared with that of an ‘expert’, being 
this a’real domain expert, a teacher or an ‘ideal student’ 
(Anderson 1987). The general philosophy followed in ITS 
development is to locate the domain specific knowledge in 
the expert module which plays therefore a twofold role: it 
acts as the source for the knowledge to be presented and, at 
the same time, it serves as the standard for evaluating the 
student’s performance” (Wenger 1987). In our context we 
assume that a student, trying to figure out the correct 
answer for an exercise, follows the same reasoning steps of 
the expert module, i.e. after interpreting the meaning of the 
exercise sentences (s)he computes the temporal relations 
between the states/events described in the sentence, 
calculates the reference times for every clause of the 
sentence, chooses the tense for the verb and, finally, 
conjugates the verb in that tense. Assumption (i) implies 
that the errors the student makes could derive only from the 
fact that some of the rules (s)he applies are ‘bugged’, not 
from the fact that (s)he can follow computational paths 
different from those of the expert. Assumption (ii), (shared 
by other authors: Brown & Burton 1980; Sleeman 1983; 
Bonar & Soloway 1985) states that it is possible to model 
these bugs by assuming more or less severe deviations from 
the knowledge base actually utilized by the expert module. 

Backward model tracing is grounded on the idea of trying 
to reconstruct, step by step and in reverse order, the chain of 
reasoning the student has followed in building the answer. 
Backward model tracing is triggered by the discovery of a 
mismatch between the answer given by the student and that 
provided by the expert module. The goal of the modelling 
process is to identify the phase(s) where the reasoning 
process of the student and of the expert differ, and the 
specific erroneous rules (malrules) applied by the student. 
Backward model tracing analyzes the reasoning process 
performed by the student starting from the last phase and 
going back toward the first ones. For each phase, the 
modeler tries to determine the input to the phase and the 
knowledge the student has utilized in order to produce the 
corresponding output. If a mismatch between the student 
and the expert output is discovered, it could mean that: (a) 
some of the rules contained in the knowledge base utilized 

by the student in that phase, or (b) some of the data utilized 
as input for that phase or, (c) both some of the rules and the 
data differ from those utilized by the expert. 

The goal of the diagnostic process performed by the 
modeler is to realize which of the above alternatives holds. 
Case (a) is true when both the expert and the student work 
with the same input data but their output is different 
because some of the rules contained in the student 
knowledge base are actually bugged. In this case a remedial 
activity could be planned in order to clarify the student 
misconceptions. As an example of case (a) let us consider 
the case when both the student and the expert have to form 
the present perfect of ‘to study’ and the student produces as 
an answer ‘has studyied’. If (b) is true, then at least one of 
the previous phases should be blamed for producing the 
erroneous data and the diagnostic process is repeated 
focusing on the phase immediately preceding the current 
one. As an example of (b) let consider the case of the 
student answering ‘has studied when in fact the correct verb 
tense is the past perfect. If (c) is true, then both the above 
mentioned activities occur, i.e., the malrules responsible for 
the mistake made in that phase are identified and the 
diagnostic process continues with the preceding phases. An 
example of case (c) is the answer ‘has studyed’ given when 
the past perfect is required. 

Backward model tracing shares all the features of the 
model tracing methodology (Anderson 1987), i.e. it tries to 
simulate dynamically a student’s problem solving and uses 
that simulation to interpret the student behavior. 
Differently from Anderson’s approach: 
- it does not rely only on a-priori established catalogue of 

correct and incorrect productions but it is able to 
dynamically generate the malrules necessary to explain 
the student performance; 

- the tracing occurs after the student has produced his/her 
performance and it is not used to monitor the student 
during the solution process just to assure that the correct 
path will be followed. 

As a result, backward model tracing possibly represents a 
less intrusive modelling methodology and a more general 
diagnostic procedure. 

Having established the general features of our approach to 
student modelling, we concentrate now on the technical 
details of the diagnostic process as it is performed within a 
single phase. 

4. Explaining the Student Answer 
The diagnostic process aimed at reconstructing the student 
reasoning for each single phase can be divided in two 
activities: the first is aimed at generating all the possible 
lines of reasoning which constitute putative explanations of 
how the student determined his solution in that phase; the 
second is aimed at discriminating among the different 
candidate explanations trying to discover the one(s) that best 
account(s) for the actual student reasoning. The present 
section explains how the first activity is performed; section 
5 deals with the hypotheses discrimination activity. 
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In order to formulate possible explanations for the student 
behavior, the modeler operates in backward chaining and 
generates a derivation tree containing the rules and facts used 
to produce the output of the phase. More precisely, the 
output is considered as explained if it is possible to prove it 
by exploiting the production rules contained in the 
knowledge base the student utilizes for that phase. As a 
result of the diagnostic process, the modeler will be able to 
identify the input data for that phase and the possible 
malrules utilized by the student. 

In order to give a more comcrete idea of the diagnostic 
process, let us follow the system operation through a 
worked out example, restricted for simplicity only to the 
last verb conjugation phase. The student, requested to 
conjugate into the appropriate tense the verb ‘to study’, 
gives as an answer ‘is studyed’ while the output given by 
the expert module is ‘has studied’. As a first step, the 
modeler transforms the student answer into the following 
clause 

verb(Verb, Tense, Person, Number, [is, studyed]l[]) 

which represents the goal to be proven and whose first four 
arguments will be instantiated at the end of the diagnostic 
process with the input data for the phase. The modeler then 
tries to construct one or more derivation trees for that goal. 
To this purpose, the system tries to find, among the rules 
contained in the student knowledge base, that whose right 
hand side matches the current goal (if several rules match 
the goal, the modeler constructs several derivation trees in 
parallel) and it tries to prove each antecedent clause in the 
left hand side of the rule. If a clause constitutes a primitive 
goal (for example a fact contained in the dictionary) it is 
considered as proven and the modeler goes on to analyze a 
new clause, otherwise the modeler proceeds recursively by 
trying to build a derivation (sub)tree for that clause. 

The main improvement of our algorithm in comparison 
with similar approaches (e.g. classic backward chaining, the 
resolution plus oracle method reported in (Costa, Duchenoy, 
& Kodratoff 1988), and the technique utilized in (Sleeman 
1983)), concerns the treatment of the failing situations. In 
fact, when the modeler finds a subgoal which is unprovable 
(i.e. which is neither a primitive goal nor can be 
demonstrated by applying the rules contained in the student 
knowledge base) it tries to recover from this situation by 
exploiting two different modelling strategies. First, it can 
resort to the bug collection technique by selecting in a 
catalogue of malrules, representing instances of stereotyped 
errors students generally make, an appropriate malrule 
which could be used to prove the current goal. This malrule 
is then imported as a hypothetical misconception into a/the 
derivation tree for the student answer. Second, if none of the 
available malrules is suitable to prove the current goal, the 
modeler tries to generate a new malrule by perturbing an 
expert rule; in other words a rule representing certain 
domain knowledge is purposely modified and made incorrect 
in order to use it to prove the original goal. This malrule is 
also imported into the derivation tree. 

While the first strategy simply utilizes the classic bug 
collection approach, the second strategy (bug construction) 
exploits machine learning techniques in order to generate 
new malrules. Among the possible machine learning 
techniques usable for generating new malrules, we have 
adopted an explanation-based approach (Mitchell, Keller, & 
Kedar-Kabelli 1986; DeJong & Mooney 1986). This 
approach, which has been already exploited in the field of 
ITS (Bar-On & Or-Bach 1988), seems particularly 
promising to be utilized for student modelling for the 
following reasons: 
- differently from other machine learning techniques, it 

requires only a few training instances (possibly only one) 
to be applied and it seems therefore particularly suitable 
for modelling when only a few student answers are 
available; 

- it is an intensive knowledge-based technique and it seems 
therefore suitable in a field where a lot of domain- 
dependent knowledge is available in terms of both the 
expert knowledge base and of diagnostic knowledge (i.e. 
knowledge about possible student errors). 

Bug construction thus constitutes the major tool when no a- 
priori information about a specific student (mis)behavior is 
available, i.e. when a student makes an error not contained 
in the bug library. The generative capability of the bug 
construction methodology, however, can be improved by 
taking into account other useful kinds of diagnostic 
knowledge. For this reason, we have generalized the bug 
catalogue approach in order to be able to represent any kind 
of misconception a student could possibly have about expert 
knowledge. The solution adopted is to allow the bug library 
to specify not only the malrules but also to describe 
possible perturbations of them (Hirsh 1985). To perturb a 
rule, the modeler uses the knowledge contained in the so- 
called meta-bug library of rules which specifies the kinds of 
perturbations that could be applied to a rule. This 
knowledge, which forms a theory of the possible errors 
students can make, is represented with general diagnostic 
rules whose condition part specifies a failing situation (a 
general pattern for a goal that cannot be proved) and whose 
conclusion part specifies a clause that could be used to 
replace the failing condition. 

Coming back to our example, the spelling error 
contained in the student answer can be explained by the 
following stereotyped malrule (MR 1): 

IF add-string(V,ed,V-ed) 
THEN form-ed(V,[V-ed IX]lX). 

which says that to form the ed-form of a verb it is sufficient 
to add the suffix ‘ed’ to the root form of the verb. 
Two rules of the meta-bug library (MB1 and MB2) utilized 
by the system are the following: 

IF verb(have,T,P,N,VlIV2) % Failure 
THEN verb(be,T,P,N,VlIV2). % Repair 

IF regular(Verb, Tense) % Failure 
THEN true. % Repair 
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1 

verb(study,present_perfect,3,singular,[is,studyed]/[]) 
the present perfect of ‘to study’, 3rd person singular, is ‘is studyed’ 

by rule Rl 

verb(have,simplegresent,3,singular.[is]/[]) verb(study,past-participle.[studyed]/[]) 

verb(be,simple_present,3,singular,[is]/[]) 

a 

word(be,form(simple_present,3,singular,[islX]/X) 

the simple present of ‘to be’. 3rd person singu/ar, is ‘is’ 

02 in DICTIONARY 

Figure 2. A derivation tree. 

The first rule takes care of the case in which a student could 
use the auxiliary ‘to be’ instead of ‘to have’ (auxiliary 
inversion represents a typical error made by Italian students) 
by saying that, in order to prove a failing clause containing 
the verb ‘to have’, it is possible to replace it with a clause 
containing ‘to be’. The second rule takes care of the case in 
which the student may forget the constraint that, in order to 
use a given conjugation rule, a regular verb is required, by 
relaxing that constraint and considering the clause to be 
proven as true. 
In our example, the first me&rule allows to explain the 
incorrect use of the auxiliary. In fact, when the modeler tries 
to prove the original goal 

verb(Verb, Tense, Person, Number, [is, stu.dyed]l[]) 

it finds a match with the consequent of the following 
conjugation rule (Rl): 

IF verb(have,simplegresent,Person,Number,VIlV2), 
verb(V,pastgarticipl,V2tV3) 

THEN verb(V, presentgerfect,Person,Number, VI lV3). 

(the present perfect of a verb is formed by joining the 
simple present of ‘have’ and the past participle of the verb). 
To prove this goal it tries to prove the two antecedent 
clauses. It fails with the first one since nowhere it can find a 
rule that enables it to deduce that 
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verb(have, simplegresent, Person, Number, [isll[l) 

(i.e. that the simple present of have is ‘is’). But now the 
meta-bug MB 1 can be applied to this clause thus obtaining 

verb(be,simplegresent,Person, Number, [is]l[]) 

which can be proven by looking at another rule (R2). By 
introducing this new clause it is possible to positively 
conclude the building of the derivation tree. Figure 2 
illustrates a complete example of a derivation tree for the 
above discussed goal while figure 3 shows both a PROLOG 
and a natural language version of the knowledge utilized. 
Each node of the derivation tree (with the exception of the 
root) specifies a (partial) conclusion produced during the 
hypothesized reasoning process of the student, while the 
root represents the final output. In the specific case, the 
student built incorrectly the present perfect as a combination 
of the simple present of the verb ‘to be’ (rule Rl) and the ed- 
form of the verb ‘to study’. His wrong answer has been 
caused by the mistakes made in producing the present 
perfect and the ed-form of ‘to study’ (this mistake is 
represented in the bug catalogue by the malrule MRl). 

Since each derivation tree describes the reasoning of the 
student applied to a very specific situation, in order to be 
able to extract more general malrules it is necessary to 
generalize the derivation tree containing the mistake. 



CONJUGATION RULES 
%% Rl: The present perfect is formed with the simple present of the verb 
9% 00 'to have' and the past participle of the verb. 

IF verb(have,simple_present,l?erson,Number,Vl/V2), 
verb(Vb,pastparticiple,V2/V3), 

THEN verb(Vb,present_perfect,Person,Number,Vl/V3). 
%% R2: The simple present of an irregular verb is contained in the dictionary. 

IF irregular(Vb,present_tense), 
word(Vb,form(simple~resent,Person,Number,Vl/V2)), 

THEN verb(Vb,simple_present,Person,Number,Vl/V2). 
%% R3: The past participle of a regular verb is formed with the ed-form 
%% of the verb. 

IF regular(Vb,pastparticiple), 
form_ed(Vb,Vl/V2), 

THEN verb(Vb,pastparticiple,Vl/V2). 

VERB DICTIONARY 
%% Dl: The simple present of the verb 'to be' is irregular. 

irregular(be,present_tense). 
%% D2: The simple present of the verb 'to be', 3rd singular, is 'is'. 
word(be,form(simple3resent,3,singular,[islX]/X)). 

%% D3: The simple present of the verb 'to have' is irregular. 
irregular(have,present_tense). 

%% D4: The simple present of the verb 'to have', 3rd singular, is 'has'. 
word(have,form(simple_present,3,singular,[hasiXl/X)). 

%% D5: The verb 'to study' is regular. 
regular(study,past-tense). 

BUG JJRRBEX 
%% MRl 

IF add-string(V,ed,V-ed) 
THEN form-ed(V,[V-edIX]/X). 

TA BUG TJRRARY 
%% MB1 

IF verb(have,T,P,N,Vl/V2) 
THEN verb(be,T,P,N,Vl/V2). 

%% MB2 
IF regular(Verb,Tense) 
THEN true. 

Figure 3. Domain and diagnostic knowledge. 

For this purpose, the modeler considers a more general 
structure, called explanation structure, which highlights the 
various rules (domain rules and possible diagnostic rules) 
applied during the construction of the derivation tree. Figure 
4 illustrates the explanation structure originating from the 
derivation tree of figure 2. Each box contains the pair of 
rule clauses unified during the construction of the derivation 
tree. 

At this point, while the standard explanation-based 
learning technique works on the whole structure in order to 
extract a single general concept, our algorithm proceeds 
instead focussing on the subtrees containing some meta- 
bugs; more precisely, it considers those rules who have 
clauses linked to the me&bugs. From a single derivation 
tree it is thus possible to infer more than one malrule. In 
our example, illustrated in figure 4, the modeler 
concentrates upon the subtree constituted by rule Rl and the 
meta-bug MBl. For each subtree, the modeler unifies the 
rule clauses to which a meta-bug has been applied with the 
left hand side of the meta-bug and then it applies the 

substitution to the right hand side of the meta-bug. In our 
example, the antecedent clause of Rl 

verb(have, simplegresent,PI ,Nl ,VlIV2) 

is unified with the left hand side of meta-bug MB1 

verb(have, T2, P2, N2, V4IV5) 

and the substitution (T2 a simple-present, P2 w Pl, N2 
w Nl, V4 C+ Vl, V5 H V2) is then applied to the right 
hand side of the me&bug. The resulting right hand side of 
me&bug MB1 is thus: 

verb(be,simplegresent,PI ,Nl ,VI fV2) 

Now, the final step consists in substituting this clause to 
the antecedent of rule Rl. The final resulting malrule is 
therefore: 
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verb(Vb,T,P,N,[is,studyed]/[]) 

verb(Vb1 ,present-perfect,Pl ,Nl ,Vl/V3) 

verb(Vb3,past_participle,VG/V7) 

6 

Figure 4. An explanation structure. 

IF verb(be,simplegresent,Pl ,Nl ,VlIV2), 
verb(Vb1 ,pastgarticiple,V2lV3) 

THEN verb(Vb1 qresentgerfect,Pl ,Nl, Vl/V3), 
- If the student answer is explained by a single derivation 

tree, the rules and the facts contained in the tree are 
inserted into the student model. 

meaning that the present perfect could be erroneously - If a hypothesized malrule appears in all the alternative 
formed with the simple present of the verb ‘to be’ and the derivation trees, it can be taken for sure and inserted into 
past participle of the verb. the student model. 

5. Discriminating among Explanations 
In general, the result of the first modelling activity is a 
collection of derivation trees which represent different 
possible reasoning processes followed by the student. The 
second basic activity of the modelling process has the goal 
to test all the generated hypotheses in order to select the 
best one(s) which account(s) for the student performance. 
During this operation the modeler behaves non 
monotonically discarding contradictory or very unlikely 
hypotheses, retracting the disconfirmed assumptions and 
transforming hypotheses into certified facts. 

- If a derivation tree contains a number of perturbations 
which is greater than an established threshold, the 
derivation tree and its hypothesized malrules are 
discharged. 

- If a hypothesized malrule, applied to simulate the student 
behavior in an exercise different from that by which it 
was originally derived, produces an answer direrent porn 
that given by the student, then it is considered as 
unplausible and discharged. 

More particularly, in order to discriminate among the 
different candidate explanations the modeler has built, two 
strategies are followed. On one hand, some heuristic criteria 
are utilized to eliminate unplausible hypotheses or to derive 
new assertions about the student. On the other hand, the 
hypotheses about the reasons of the student behavior are 
maintained by utilizing a justification-based truth 
maintenance system (Doyle 1979; McAllester 1982). 

Some of the heuristic criteria utilized to discriminate 
among the different hypotheses are the following: 

The hypotheses the modeler makes about the student are 
managed through a justification-based truth maintenance 
system. In particular, the hypotheses are organized into a 
network (called dependency network ) which describes the 
dependency relations among different hypotheses. For 
example, the rules and the dictionary facts Rl, R2, R3, Dl, 
D2, and DS support the derivation tree of figure 2 and this 
derivation tree supports both the stereotyped malrule MRl 
and the newly constructed one. If some node of the network 
is deleted during the modelling process, then all the nodes 
that are dependent on it are also cancelled. This operation is 
achieved by following the edges of the dependency network. 
On the other hand, when a previously constructed 
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hypothesis is confirmed, it is introduced into the student 
model and, furthermore, the consequences of this change are 
propagated through the dependency network thus influencing 
the truth of the other hypotheses supported by it. 

The diagnostic process requires generally also the 
cooperation of the tutoring module. When the information 
the system has about the student is insufficient to 
discriminate among the different alternative hypotheses 
generated by the modeler, the tutor can (i) assign new 
exercises in order to gather data to confirm or disconfirm 
them or (ii) can start an interactive (menu-driven) dialogue 
with the student. More precisely, the tutor selects from the 
exercise database the exercises related to the hypothesized 
misconceptions and, for each of them, the system 
determines the answers corresponding to these 
misconceptions. An exercise is considered as discriminating 
if it gives different answers for every different hypothesized 
misconception. The tutor then can select the most 
discriminating exercise. If no discriminating exercises are 
available, it is necessary to use the dialogue in order to 
establish which misconception reflects the student 
knowledge. It must be pointed out that the tutor considers 
not only the derivation tree(s) related to the last exercise but 
it also analyzes the derivation trees of the previous exercises 
in order to examine the remaining hypotheses. The analysis 
of a student misconception cannot therefore generally be 
completed in a single exercise but it requires a sequence of 
exercises. 

6. Conclusions 
A new methodology for modelling student performance has 
been presented which could be used for making diagnosis in 
those systems that, like ET are based on processes 
decomposable into a finite number of subtasks related to 
each other through producer-consumer dependencies. It is 
claimed, in other words, that the deep modelling process 
illustrated in the paper has general significance beyond the 
domain of second language teaching and can constitute an 
attempt to deal with the problem of finding the reasons of 
and giving a satisfactory explanation to the student 
performance. Some features of the proposed approach that 
we find particularly original are: (i) the integration of the 
bug collection and bug construction techniques, (ii) the use 
of diagnostic knowledge contained in the me&bug library 
in order to help the process of bug construction, and (iii) the 
use of explanation based learning techniques in the domain 
of modelling students’ misconceptions. The proposed 
approach has been fully implemented in a student modelling 
module written in QUINTUS PROLOG and running on a 
SUN 3 workstation. 
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