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DEFINING AND REPRESENTING FUNCTION:
EXISTING APPROACHES

D PUTIING FUNCTIONAL
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GROUND
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Dipartimento di Matematica e Informatica, Unlverslta
di Udine, Udine, Italy

In this paper wefocus on the concept and representation offunction in the context of the multi­
modeling approach. The main contribution ofthe paper is to discuss the nature offunctional
knowledge and to disambiguate this type ofknowledge from other types, such as teleology, be­
havior, and structure. Moreover, a general and theoretically soundframework for integration
of these types ofknowledge into a coherent system is proposed. Existing approaches to the
definition and the representation offunction are compared and their major limitations are
highlighted. The concept offunction and its representation in the multimodeling approach are
illustrated. An example offunctional representation concerning a household electric buzzer is
discussed and the relations between functional knowledge and teleological, behavioral and
structural knowledge are presented. The main contributions ofour approach in the domain of
diagnostic reasoning are summarized, and the paper concludes by mentioning current re­
search work.

I

The concept of function enters into a system description when some teleolog~
(i.e., purpose) is supposed to be accomplished by the system (Kampis, 1987). A

I

crucial point however, concerns the precise differentiation of the two concepts of
I

function and teleology. Two main points of view can be found in the literature. For
some authors, the concepts of function and teleology are synonymous: the functiori

I
of at system is identified by the task the system accomplishes or should accomplish
(Steels, 1989) or by its intended use or purpose (de Kleer, 1984; Sembugamoorthy
& Chandrasekaran, 1986; Keuneke & Allemang, 1989; Franke, 1991; Keuneke,
1991; Sticklen & Bond, 1991). Other authors distinguish more accurately between
function and teleology by defining function as (I) a relation between the goal 6f
human user and the behavior ofa system (Bobrow, 1984), or (2) binding information,
that relates components to processes in which they take part (Addanki & Davis,
1985), or (3) abstract characterization of behavior performed by taking into account

I

I
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240 L.Chittaro et al.

the purpose of a system, namely, the reasons of actual implementation (focusing on
overall organizational principles) (Rasmussen, 1986), or (4) interpretation of be­
havior that captures typical properties of components in terms ofgeneralized actions
performed on substances (e.g., information, energy, mass) flowing through them
(Lind, 1982; Fink & Lusth, 1987).

Both points of view conceive function as more abstract than behavior and
structure, where abstraction is intended as independence from physical implemen­
tation (different structures may provide the same function) (Bobrow, 1984; Rasmus­
sen, 1986; Fink & Lusth, 1987) or as change in the conceptual level (for example,
when sequences of states or pieces of behavioral trajectories that produce a syner­
gistic uniform action are "packed" together and identified with a new higher-level
concept, e.g., oscillation or amplification).

Two main approaches, which we will informally name "hybrid" and "pure,"
have been followed in representing the function of a system. In the hybrid approach,
different types of knowledge about the system (i.e., structural, behavioral, function­
al, and teleological) are organized in a single frame, which is usually centered on
teleology. As an example, Figure 1 shows the functional representation of the
reaction wheel assembly (RWA) onboard the Hubble space telescope as proposed
by Goel and Chandrasekaran (1989). This functional representation specifies the
purpose of the system (to_make), the input state (provided), and the contextual
conditions (given) to be met in order to achieve the purpose, the behavior that realizes
the purpose (by), and the undesired effects (side_effect) expressed both in abstract
(e.g., generation of heat) and behavioral terms (by). Figure 2 sketches the general
frame upon which this representation is based.

In the hybrid approaches the modeler is free of packaging knowledge inside the
given frame and establishing relations between knowledge elements of different
types without obeying strict modeling constraints. Although, on the one hand, these
approaches simplify the modeling process, on the other hand; (I) they lack a
principled methodology for model building, (2) they do not easily allow automatic
checking of consistency between different types of knowledge in the model, (3) they

FUNCTIONS:
GIVEN: Control signal e
TO-MAKE: Change angular momentum of Telescope

L_telescope
I c.L_telescope I = f(+c)

PROVIDED: Large AngUlar Velocity of Rotor
BY: BehaviorChangeMomentum
SIDE-EFFECT: Generation of heat in Bearing

a_bearing
a_bearing =f(-In_shaftl)
BY: BehaviorGenerateHeat

END FUNCTIONS

Figure 1. Hybrid approaches: functional representation of the reaction wheel assembly (Goel
& Chandrasekaran, 1989).
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Putting Functional Knowledge on Firmer Ground 241

GIVEN: conditions

PROVIDED: Purpose 01
----4 1 Structural

input Component

TO-MAKE:
~~~

desired output
state

SlOE-EFFECT:
undesired functionBY:

behavior

Figure 2. Hybrid approaches: a general frame.

lead to monolithic models that are difficult to reuse, and (4) they do not allow use
of each type of knowledge (e.g., structural, behavioral, or functional) in isolation to
perform complex tasks (such as simulation or diagnosis).

In the pure approaches, function is clearly separated from other types of
knowledge. It is represented by means of a set of primitives, which are interpreta-I
tions of typical behaviors of physical systems. As an example, Figure 3 shows the
set of primitives proposed by Lind (1982), while Figure 4 illustrates the functional I
representation of a reactor coolant system in terms of this set of primitives. In this.
approach, functional primitives describe primitive actions that a component may
perform on substances flowing through it; for example, the storage represents the
property of a system to act as a buffer or accumulator of mass or energy.

However, a crucial problem in pure approaches is the choice of the set ofl
functional primitives. In general, primitives are chosen empirically, by observation
and generalization of specific systems' behaviors. This leads to two main difficulties:1
there is no guarantee that the set of primitives is still expressive outside the class of
observed systems and (2) the link between behavior and function has no formal
physical basis; thus, the minimality of the set is hard to evaluate, and automatid
checking of consistency between different models becomes a difficult or everl.
impossi ble task. I

In order to overcome the above described limitations of current approaches to
functional representation, we claim that the chosen approach should be pure, but
physically sound. I

I

FUNCTION IN THE MULTIMODELING APPROACH !

In recent years, we proposed a novel methodology for representing and reason!
I

ing about physical systems, called multimodeling (Chittaro et al., 1989, 1992, 1993a;
Brajnik et al., 1990). This approach is based on the key idea of considering the task
of reasoning about a physical system as a cooperative activity, which exploits the

I
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Figure 3. Pure approaches: a basic set of roles (Lind. 1982).
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Figure 4. Pure approaches: functional representation of a reactor coolant system (Lind. 1982).
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Putting Functional Knowledge on Firmer Ground 243

contribution of several separate models of the system, each one encompassing only
a specific type of knowledge and a specific representation mechanism. Moreover, I

models are interconnected, that is, any individual model must be explicitly and
appropriately connected to the others. The execution ofa problem-solving task (e.g.,
diagnosis or design) within the multimodeling approach is based on two fundamental
mechanisms: (I) reasoning insidea model, which exploits knowledge available within
a single model by using model-specific problem-solving methods, and (2) reasoning
through models, which supports opportunistic navigation among models in order to
allow each individual step of the problem-solving activity toexploit the most appropriate
knowledge source. A detailed description of representation and reasoning issues in the
multimodeling approach is given by Chittaro et al. (1993a). For the purpose of this paper,
we are mainly concerned with the concept of epistemological type.

Epistemological Types

By epistemological type, we mean the class of epistemological features the,
model can represent about the real system. In our approach we consider five I
epistemological types:

Structural knowledge is knowledge about system topology. This type of knowledge I

describes which components constitute the system and how they are connected
to each other (their adjacency).

Behavioral knowledge is knowledge about potential behaviors of components. This
type of knowledge describes how components can work and interact in terms
of the physical quantities that characterize their state (variables and parameters)
and the laws that rule their operation.

Functional knowledge is knowledge about the roles components may play in the I
physical processes in which they take part. This type of knowledge relates the
behavior of the system to its goals, and deals with functional roles, processes, andI
phenomena. I

Teleological knowledge is knowledge about the goals assigned to the system by its:
designer and about the operational conditions that allow their achievement through
correct operation. This type of knowledge concerns the high-level reasons that are
behind the system concept and that have determined its actual structure. ;

Empirical knowledge is knowledge concerning the explicit representation of system
properties through empirical associations. This type of knowledge may bi
derived from observation, experimentation, and experience and may include, id
particular, the subjective competence that usually human experts acquire
through direct interaction with a system. ·1

The five epistemological types defined above can be appropriately grouped intd
three categories. Structural and behavioral knowledge are fundamental knowledge

I
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244 L. Chittaro et 01.

used to reason about a system exploiting the objective and neutral language of
natural sciences. Functional and teleological knowledge are interpretative
knowledge derived from a subjective interpretation of fundamental knowledge
in terms of functions and goals of system components. This knowledge does not
have the same generality and objectivity of fundamental knowledge; for ex­
ample, when we say "component X is devoted to ... ," we express a relationship
between a system component (its structure and behavior) and a goal, which is
generally not valid for other components of the same type in the same system or
in other systems. Finally, empirical knowledge is a separate category that
concerns explicit statements of system properties and may refer to both fun­
damental and interpretative knowledge.

In the following, we will examine the concept of function and its representation
in the multimodeling approach.

Functional Representation

The function of a system is defined as the relation between its behavior and the
goals (teleology) assigned to it by the designer. The functional representation of a
system is aimed at describing how the behaviors of individual components con­
tribute to the achievement of the goals assigned to each part of the system (Rasmus­
sen, 1986).

Functional knowledge is represented through three kinds of models: the model
of functional roles, the model of processes, and the model of phenomena. These
models are related by well-defined links. In this way, the mapping between behavior
and teleology is realized in a gradual way by progressively introducing in the
representation knowledge elements that are more and more dependent on purpose.
We will briefly sketch the three kinds of models in the following and then we will
illustrate the links existing among them.

Functional Role Model

We interpret the behavior of a system in terms of flow structures that is, in terms
of networks of operators acting on sub. tances flowing through the structure of the
system (e.g., electrons, heat, liquius) and in terms of the causes responsible for their
flow (e.g., electrical voltage, thermal gradient, pressure gradient).

In this framework the functional role of a component is an interpretation of its
behavior, or more precisely, of the equations governing its behavior, and is aimed
at characterizing how the component contributes to the realization of the flow
structure in which it takes part.

The interpretation is carried out using the tetrahedron of state (TOS) (Paynter,
1961; Rosenberg & Karnopp, 1983). The TOS (as shown in Figure 5) is an abstract
framework that describes a set of generalized equations common to a wide variety
of domains (such as thermodynamics, rotational and translational mechanics, fluid
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Putting FunctionalKnowledge on Firmer Ground 245

e-generator

F4(e,E)=O

c:-1 q-reservoiry - F1(e,q,C)=O

dq/dt=f F2(e,f,R)=O e=dp/dt

~
condUit ~

f - F3(f,P,I)=O.~
p-reservoir

F5(f,F)=O

f-generator

Figure5. The tetrahedron of state (Paynter, 1961) and the associated names of functional roles.

dynamics, and electromagnetism). Generalized equations describe typical relations I

among a set of generalized variables, such as effort (e), flow (j), impulse (P), and
displacement (q), and generalized parameters, such as capacity (C), resistance (R),
inductance (I), electro-motive force (E), and electromotive flow (F). When the TOS
is instantiated in a specific domain, we obtain the ordinary physical variables and
equations.

The set of primitive functional roles has been chosen by assigning a name
(q-reservoir, p-reservoir, conduit, e-generator, f-generator) to each generalized
equation. The conduit role has been further specialized in order to highlight special
cases, such as infinite resistance (barrier role) or infmite conductance (purely
conductive conduit). In this way, the choice of functional roles has a sound basis.
Functional roles have clear semantics that can be checked by looking at the form of
the generalized equation that they are an interpretation of. A modeling guide is
available to the modeler. The set of functional roles is defined independently of any
specific domain and has a wide applicability.

Two types of relations between functional roles have been identified by looking
at the possible ways that generalized variables may influence each other. These are
mutual dependency and influence. Two functional roles FRi and FRj, which refer to
physical equations PEi and PEj, respectively, are mutually dependent if PEi and PEj
share a physical variable directly or indirectly [i.e., through a structural equation,
which is a relation among physical quantities that does not involve parameters and
usually represents general principles of conservation (balance equations) or defini­
tions of new concepts (definitional equations)]. Figure 6a shows an example of
mutual dependency (direct) between two conduit roles associated with two electrical
resistors connected in series (they share the I variable); Figure 6b shows an example
of mutual dependency (indirect) between two reservoir roles, one associated with
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246 L. Chittara et al,

a) 0------0
V =R I, 1

V =R I
2 2

b) 0------0
F=-kx

vedx/dt

p=mv

Figure 6. Examples of mutual dependencies.

the spring and one with the mass of an oscillating system (the definitional equation
v = dx/dt relates variable x in one role to variable v in the other).

A functional role FRi that refers to physical equation PEi influences a functional
role FRj that refers to physical equation PEj if a physical variable of PEi is a
parameter of PEf Figure 7 shows an example of influence between a reservoir role
associated with a tap and a conduit role associated with a pipe (the amount of angular
displacement e stored in the reservoir determines the value of resistance R of the
conduit).

The functional role model of a system describes the potential functional roles
of its components and the relations among them. It is represented by a functional
role network (FRN). Of course, since functional roles and relations are generalized
entities, they have to be specialized in the appropriate physical domains when they
are used to represent a specific system.

Process Model

Functional roles participate in physical processes. A process is a four-tuple
<cofunction, precondition, effect, posteffect>, where cofunction is a FRN that
specifies which functional roles are necessary and how they must be related in order
to enable the occurrence of the process; precondition is a logical predicate that
characterizes the situation that enables the process to occur; effect is a logical
predicate that characterizes the situation that is true during the occurrence of the
process; and posteffect is a logical predicate that characterizes the situation that is
true after the process has terminated, after its precondition ceases to hold.

t= a e
R=ke

P=RG

Figure 7. Example of an influence relation.
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Putting Functional Knowledge on Firmer Ground 247

A finite set of three possible processes has been identified for the class of systems
whose behavioral model can be interpreted in terms of the TOS. They are the transport­
ing process (TRANS), the reservoir charging process (RESC), and the reservoir
discharging process (RESD). These types of processes are described in detail by Chittaro
et a1. (1993a). For example, the cofunction of a transporting process can be constituted
by a generator and an arbitrary positive number of conduits connected in series; its
precondition can specify that the effort variable (i.e., voltage in the electrical domain,
pressure in the hydraulic domain, force in the mechanical domain) associated with the
generator is greater than zero; its effect can specify that the flow variable (i.e., current
in the electrical domain, flow in the hydraulic domain, velocity in the mechanical
domain) associated with the conduits is greater than zero; its posteffect can specify that
the effort variable associated with the generator is zero. We have also introduced
blocking versions of the three processes by including at least a barrier in theircofunction:
for example, a transport-blocking process differs from a transporting process in that
(I) its cofunction can be composed of a generator, an arbitrary number of conduits, and
at least a barrier connected in series and (2) its effect specifies that the flow variable
associated with the conduits is zero.

Instances of processes can be identified automatically by a pattern matcher once
general patterns for possible cofunctions are defined. For example, the pattern
matcher can analyze the functional role model to recognize instances of the general
cofunction pattern described above for transporting processes; in this way, all
possible transporting processes in the process model can be identified.

Processes have an associated functional state: active or not active. We say that
a process is active if its cofunction holds in the system and its precondition is
satisfied; the process is not active when either its cofunction does not hold or its
precondition is not satisfied.

Three types of relations between processes have been identified by looking a
the possible ways function roles are related. These are as follows:

Direct causation: A process Pi directly causes a process P] if the effect or posteffect
of Pi entails the precondition of P]. For example, pumping (reservoir charging
in the rotational domain) causes water transportation (transporting in the hy­
draulic domain), since the effect of pumping is to create a pressure drop, that is,
the precondition for water transportation.

Regulation: A process Pi regulates a process P] if there exists an influence relation
between two functional roles belonging to their respective cofunctions that involves
a generalized resistance. For example, the process of turning a tap changes the
section of the water conduit and thus modifies the rate of the process of water
transportation,

Support: A process Pi supports a process Pj if there exists an influence relation between
two functional roles belonging to their cofunctions that involves a generalized
substance on one side and a generalized capacitance (or inductance) on the other
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248 L. Chittara et al.

side. Consider, for example, two hydraulic tanks A and B connected through a
pipe. Suppose that tank A has been filled with hot water, while B is empty, and that
the hot water flows from A to B. Two processes coexist: process 1 is a discharging
capacitorprocess in the hydraulicdomain (water flows from tank A to B), and process
2 isa dischargingcapacitorprocess in the thermaldomain(heatflows fromA to B).We
can now say that process1 supportsprocess2 becauseof the influencerelationholding
between water and heat: the capacity of the water considered as a reservoirof heat is
influencedby the volume of water present in the tank.The process model of a system
describes the potential processes that may occur in the system and their relations. It is
represented by a process network, where processesare specialized in the appropriate
physicaldomains.

Phenomenon Model

Processes participate in the definition of physical phenomena. A phenomenon
is a four-tuple <organization, precondition, effect, posteffect>, where organization
is a process network that specifies which processes are necessary and how they
must be related in order to enable the occurrence of the phenomenon; precondition
is a logical predicate that characterizes the situation that enables the phenomenon
to occur; effect is a logical predicate that characterizes the situation that is true
during the occurrence of the phenomenon; and posteffect is a logical predicate that
characterizes the situation that is true after the phenomenon has ended, that is, after
its precondition ceases to hold.

Phenomena whose organization is constituted by a single process are called
elementary phenomena. The set of phenomena is open ended. Several types of
commonly occurring phenomena can be easily identified, such as natural and
damped oscillation, homeostasis, and dynamic equilibrium. Phenomena are de­
scribed in detail by Chittaro et al. (1993a).

The phenomenon model ofa system describes the potential phenomena that may
occur in the system and their relations. It is represented by a phenomenon network,
where phenomena are specialized in the appropriate physical domains.

Integrating Functional Models

Well-defined relations exist between the functional role model and the process
model of a system as well as between the process model and the phenomenon
model. The link between the functional role model of a system and its process
model is represented by the concept of cofunction, which aggregates a set of
functional roles supporting a process. Analogously, the link between the process
model of a system and its phenomenon model is represented by the concept of
organization, which aggregates a set of processes supporting a phenomenon. In this
way, it is possible to use each model separately but also to translate/reformulate
data and results from one model to another.
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Putting Functional Knowledge on Firmer Ground 249

CASE STUDY: MODELING A HOUSEHOLD ELECTRIC BUZZER
In order to illustrate the above concepts, let us consider the functional representation

of a conventional door buzzer. The schema of the device is represented in Figure 8. It
consists of a gong, a spring-loaded hammer, a contact, an electromagnet whose armature
is connected to the hammer, a battery, and a switch. Although the buzzer is a relatively
simple system from a structural point of view, its operation is complex enough to explore
ideas of qualitative simulation and functional modeling (de Kleer & Brown, 1983;
Sembugamoorthy & Chandrasekaran, 1985; Kumar & Upadhyaya, 1993).

Figure 9 shows the functional representation of the buzzer. It consists of a
functional role model (FUN.R), a process model (FUN.P), a phenomenon model
(FUN.PH), and two sets of links (represented within boxes) relating corresponding
elements in different models. Several assumptions have been made in building these
models. For example, we ignored thermal effects of current flow as well as any
current that may be induced by the magnetic field of the coil. Moreover, we neglected
the reluctance of iron in the magnet. These assumptions are reflected in the choice
of the roles, processes, and phenomena included in the representation.

Considering Figure 9, the function of the door buzzer can be understood as
follows. When the user acts as a generator of mechanical force (GO) on the switch
(ROq), he/she enables a reservoir charging process (RESCOq) of mechanical

Hammer

Contact

Spring -+----+-1

Figure 8. Schematic of a household electric buzzer.
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250 L. Chittaro et al.

PHO<--> (AESCo'\
PHl <--> (TAANS1-AEscfl-AESC3Q-BLOCK:TAANS1-AESDfl-AESD3Q)
PH2 <_.> (TAANS1-AEscfl-AESC2P-TAANS2)

Phenomena
PHO : User action
PH1 : Hammer oscillation
PH2 : Electrical to acoustic

transduction

7 - Armature
8 - Hammer
9 - Spring
10 - Gong
11 - Air

Components
1 - Battery
2 - Switch
3 - Contact
4 -Coil
5 - Magnet
6 - Air gap

Functional roles
C : Conduit
CC: Purely conductive

conduit
B : Barrier
G : Generator
Ge : e-Generator
Gf : I-Generator
RP : p-Reservoir
Rq : q-Reservoir

Functional relations
-- : dependency
----. : inlluence

Views
c::::J Electrical
... Magnetic
1·····1 Mechanical
IZ:Z<I Acoustic

Processes
TRANS : Transporting
RESCq q-Reservoir

charging
RESCP p-Reservoir

charging
RESOq q-Reservoir

discharging

TAANS2 <-> (G4-C3)
BLOCK:TAANS1<-> (G'.CCQ-B2-C4-C 1
RESD1Q<-> (A,q.C2-G2)
AESD3Q<-·> (A:J'-CC2-G3'

AESCO <--> (GO-Aoq)
TAANSl <--> (Gl. CCO-CC,-C4-Cl)
AEsc,q<--> (G2-CC3-Al ql

AESC3q<--> (G3e.CC2_A3<l)
RESC2 p<-> (G3'-CC2-A2 "J

FUN.R

FUN.P

Figure 9. Functional representation of the household electric buzzer.
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Integrating Function with Structure and Behavior

INTEGRATION OF STRUCTURE, BEHAVIOR,
FUNCTION, AND TELEOLOGY

Putting FunctionalKnowledge on Firmer Ground 251

displacement in the switch. The switch in the electrical view becomes a purely
conductive conduit (CCO). This completes the electric circuit through battery (G I),
contact (CCI), armature (C4), and the coil (CI) of the electromagnet, enabling an
electrical transporting process (TRANS I). When the coil is crossed by current, it
acts also as a generator of magnetomotive force (G2), enabling a magnetic circuit
through the magnet (CC3) and air gap (RIq). This results in a reservoir charging process
(RESC Iq) of magnetic flux. The resulting mechanical attraction of the armature is
described in terms of both potential (G3e generates force) and kinetic (G3 f generates
velocity) energy. The activation of G3 f enables a reservoir charging process (RESC2P)

of momentum in the hammer (R2P), and the hammer striking against the gong (G4)
activates an acoustic transporting process (TRANS2). The activation of G3e enables a
reservoir charging process (RESC3 q

) of displacement in the spring (R3q
) , and the spring

moving apart opens the contact (the corresponding role changes from CCI to B2),
blocking (BLOCK:TRANS I) the existing electrical transporting process.

As a consequence, the coil (CI) is no longer crossed by the current and it no
longer acts as a generator of magnetomotive force (G2 becomes a purely conductive
conduit), enabling a discharging process of the magnetic flux (RESDI q) that
demagnetizes the electromagnet. This, in turn, deactivates G3e and G3 f and results
in a reservoir discharging process (RESD3q

) of displacement stored in the spring,
rebounding the armature-hammer assembly. When the spring is completely dis­
charged (q = 0), it reconnects to the contact (the corresponding role changes from
B2 to CCI) and reactivates the electrical transport process (TRANS I). r

At the level of phenomena, as long as the switch is held down (PHO), the,
oscillation of the hammer (PHI) repeats, each time resulting in an electrical tOI
acoustic transduction (PH2). I

This example shows how the proposed approach to functional representation,
allows us to describe the behavior of the system in abstract terms and, at the same,
time, to keep the description grounded in physics. I

I

I

I
In this section, we briefly illustrate some basic concepts of our approach to the

representation of structure, behavior, and teleology in order to highlight the relations,
between function and these three types of knowledge. i

I

I
I

In the multimodeling approach the structural model represents the topology of
a system using three concepts: (l) components, which represent the physical entitie~

that constitute the system and determine its behavior, (2) nodes, which are used to
connect together two or more components, and (3) connections, which describe hoi,

I
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252 L. Chittaro at al.

components are connected together through appropriate nodes. Components and
nodes have typed terminals that are passive channels, supporting possible interaction
with the outside environment. Each terminal supports just one kind of physical
interaction.

The behavioral model is devoted to represent the potential behavior of the system.
It is represented in terms of (I) physical quantities, which are the basic entities used to
capture the nature, state, and behavior of a system; (2) physical equations, which
represent the relations existing among physical quantities and characterizing the poten­
tial behavior of a component or of a node; and (3) operating modes, which provide a
characterization of mutually exclusive operating regions of a component.

The link between behavior and structure is realized by associating behavioral
primitives to structural primitives. in the sense that each component and node is
associated with the physical quantities and equations that describe its behavior in
each operating mode.

The link between function and behavior is established through the TOS, in such a
way that each physical equation in the behavioral model that is a specialization of a
generalized equation in the TOS is associated with the corresponding functional role in
the functional role model. Since behavior is related to structure, the association between
functional roles and equations results in an indirect assignment of functional roles to
structural components. In general, this assignment is many to one: a component isbound
to several coexisting functional roles in the same or in different physical domains.

Considering again the example of the door buzzer, Figure 10 shows how the
integration of function with structure and behavior is actually accomplished. For
simplicity, the figure focuses on a limited portion of the entire device. The structural
model (STR) describes which are the components of the system and how they are
connected together through nodes. As an example, component CMP4 (the coil) is
electrically connected to component CMPI (the battery) through node Nl, and it is
magnetically connected to component CMP5 (the magnet) through node N2. The
behavioral model (BEH) of the buzzer is made up of a collection of physical
quantities and physical equations holding among them. Physical equations are
organized according to a set of physical views representing different physical
domains. Each component and node in the structural model is associated with the
physical quantities and equations that describe its behavior in each operating mode
(we illustrate here a single operating mode corresponding to the switch being
closed). As an example, component CMP4 (the coil) is associated in the electrical
view with Ohm's law (i.e., V3 - V4 = RI *13), and its two terminals (CMP4.ET2
and CMP4.ETl) are associated with electrical currents (13and 14)and voltages (V3
and V4). Moreover, CMP4 is also associated in the magnetic view with the equation
Ml = N*I3, relating the magnetomotive force Ml (associated with the magnetic
terminal CMP4.MTl) to the electrical current 13 and the number (N) of turns of the
coil. Finally, physical equations are associated with functional roles represented in
the functional role model (FUN.R), thus realizing the integration with the functional
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Putting Functional Knowledge on Firmer Ground 253

FUN.R

Components

1 - Battery
4· Coil
5· Magnet
6· Air gap

I
I

I

I

[V3-V4.R1'13] <--> C1
[V1.V4j <--> (G1--C1)
[11+141 <--> (G1--C1)
[M1.WI31 <--> G2

[M.(xI~O'Ar01 <_.> R1q
[M.M1. 0=01 1<--> CC3
[F1=(112~ 'Ar02] <--> G3

Physical variables

Figure 10. Integration of function with structure and behavior.

M . "<--> CMP6.MT1
~ . A <--> CMP6
F~ <--> CMP6.ME1

[V3-V4.R1 '131 <--> CMP4
[Vl=V41 <--> N1
[11+141 <--> N1
[M1.WI3] <--> CMP4

[M.(xI~o 'Ar01 <--> CMP6
[F1=(1I2~ 'A)'021 <--> CMP6

,

i

I
I

i

I
,

I

I
I

I

node with terminals I
connection
in the electrical view
connection I
in the m~gnetic view ,
connection
in the mechanical View,

I

I
!

I

I

v: electrical voltage
I: electrical current
E: electro·motive force
R: resistance
M: rnaqnetc-mouvs force
0: flux
d0/dt : flux rate
N: number of Coil turns
x: length of air gap
A: areaof air gap
~ c: permittivity of air
W: stored energy in air gap

6- component with
terminals

4

BEH

W(x,0)=1 Md0
F1=(JWfC)x
F1=(1/21l{)'Are!

mechanical view

M1=N'13
d01/dt=(V3-V4)/N
M=(x/J,1o 'A)'0
M=M1
0=01

magnetic view

STR

V3. 13 -c--> CMP4.ET2
V4, 14<--> CMP4.ET1
R1 <r-> CMP4
M1 <r-> CMP4.MT1
N <--> CMP4

V1·V2=E1
11 +12=0
V3·V4=R1'13
13+14=0
11+14=0
V1=V4

electrical view
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254 L. Chittaro at al.

representation. For example, Ohm's law V3 - V4 = RI*13 is associated with a
conduit (C I) in the electrical view, while the equation M I = N*13 is associated with
a generator (G2) in the magnetic view. This results in an indirect assignment of
functional roles to components: for example, the coil (CMP4) is both a conduit (CI)
in the electrical domain and a generator (G2) in the magnetic domain; the air gap
(CMP6) is a reservoir of flux (R Iq) in the magnetic domain and a generator of force
(G3e) in the mechanical domain.

Integrating Function and Teleology

The teleology of a system is defined as the specification of the goals assigned
to it by the designer. System goals are assumed to be achieved through phenomena.
The basic concept in our representation of teleology is the goal. A goal is a triple
<goal pattern, operational conditions, intended behavior>, where goal pattern
assigns a name to the goal and specifies its arguments, namely typed variables
relevant to the definition of the goal (e.g., to_transfer x:generalized current from
y:component to z:component; to_control x:generalized current by y:generalized
substance); operational conditions specify the inputs and the setting of controls that
should be provided in order to enable the system to achieve the goal; and intended
behavior specifies the effects that are expected from the achievement of the goal.

We distinguish among primitive goals and nonprimitive goals. Primitive goals
can be directly accomplished by elementary phenomena (e.g., to transfer goals can
be achieved by means of elementary phenomena whose organization is constituted
by a transporting process). Nonprimitive goals can be achieved by phenomena
whose organization is composed of more that one process (e.g., to_control goals can
be achieved by a phenomenon whose organization is constituted by a reservoir
charging process that regulates a transporting process). The teleological model of a
system describes the purpose of the system by specifying the goals associated with
each part of it. More than one teleological model ofa system can be used to represent
the teleology associated with the system at different aggregation levels. Each model
describes a specific level in the decomposition of a goal into subgoals. Relations
between teleological models are represented by subgoal relations which relate goals
in a model with the corresponding goals in a finer-grained or coarser-grained model.

The link between function and teleology is thus established through the phe­
nomenon model. This link associates goals with phenomena and is founded on
generic engineering knowledge, which denotes "a general arrangement of devices
that is well understood" (Bradshaw & Young, 1991) and is used to attain a purpose.
In general, this assignment is many to many, that is, a goal can be achieved by several
phenomena, or the same phenomenon can participate in the achievement of more
than a single goal.

Considering again the example of the door buzzer, Figure II shows two
teleological models of the device: TEL-O and TEL-I. Each model describes the
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TO-CONTROL intermittent sound
BY switch position

G

TO-PRODUCE hammer oscillati

B
TEL-1

TO·TRANSDUCE hammer oscillation
INTO intermittent sound

B
TO·CONTROL hammer oscillation

BY switch position

G1.1 <--->PH1
Gl.2 <._-> (PHo--PH1)
Gl.3 <---> (PH1---PH2)

( PHD H PHIH~)

FUN.PH

Figure 11. Integration of function with teleology.

purpose of the buzzer at a specific aggregation level. Model TEL-O represents the
goal GO (i.e., to_control intermittent sound by switch position) associated by the
designer to the door buzzer. Model TEL-l represents a finer aggregation level, in
which the teleology of the device is represented by three goals: goal G1.1 i

(toyroduce hammer oscillation), goal G 1.2 (to_control hammer oscillation by
switch position), and goal G 1.3 (to_transduce hammer oscillation into intermittent i
sound). All goals represented are nonprimitive. The figure shows also the link :
between teleology and function. More specifically, it shows which phenomena'
described in the FUN-PH model achieve which goals. Note that the same:
phenomenon PHI (i.e., hammer oscillation) participates in the achievement of alii
the goals described in model TEL-I. I

APF'LICATION TO DIAGNOSTIC REASONING
I

Research on model-based diagnosis has so far mainly focused on the use of .
structural and behavioral knowledge, but the resort to functional knowledge is !

gaining attention in order to increase the efficiency of model-based diagnosis, !

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 2
1:

41
 2

7 
N

ov
em

be
r 

20
13

 



256 L. Chittaro at al.

improve the cognitive coupling with the user of the diagnostic system, and exploit
all those observations (e.g., missing processes, presence or absence of generic
substances) that the user is able to provide and are more abstract than behavioral.

Chittaro et al. (l993b) focused specifically on the generation of minimal
diagnoses of multiple faults based on our functional representation, proposing a
functional diagnosis (FD) algorithm. In contrast with more general diagnostic
approaches such as the general diagnostic engine (de Kleer & Williams, 1987; Struss
& Dressler, 1989), FD is specialized on the peculiarities of the proposed functional
representation. This allowed us to exploit the physical knowledge implicit in the
representation in order to avoid the need for explicit fault models and the necessity
of considering a huge number of combinations of correct models and fault models.
This is made possible by three features of the functional model: (I) it is based on
generalized functional roles that can undergo only a small set of physically legitimate
changes (for example, a conduit cannot become a generator, but it can become a
barrier), (2) influences provide an explicit representation of dependence relations
between different physical views (for example, a bulb can be a light generator in the
optical view only if electrical current flows through it in the electrical view), and
(3) processes give a global point of view ofthe paths followed by generalized flows,
and cofunctions of processes identify all functional roles involved in supporting a
specific process (in this way, the cofunction ensures that consequences of local role
changes are globally reflected).

Implementation of FD does not require to resort to conceptually and computa­
tionally complex truth-maintenance machinery such as the Assumption-based Truth
Maintenance System. Efficiency benefits also from the possibility of exonerating
components from responsibilities when their function is strictly necessary to support
observations, thus decreasing the size of conflicts. FD is thus able to efficiently
generate all and only the physically possible functional diagnoses.

When a diagnosis cannot be formulated only in functional terms (e.g., slight
losses of systems performances, operator errors), the case has to be solved by
resorting to other models. This has been experimented with in the Dynamis diag­
nostic prototype (Chittaro et aI., 1989, 1992, 1993a): in contrastto the FD algorithm,
which is based on a single type of knowledge, Dynamis allows us to represent
symptoms and faults at all levels: structural, behavioral, functional, teleological, and
empirical. Dynamis has been implemented in Prolog and tested on examples
concerning the diagnosis of several technical systems. The prototype employs a set
of diagnostic techniques, such as operator diagnosis (it tries to find an explanation
for the symptoms also in potential errors of the operator of the physical system) and
diagnosis focusing (it tries to use conclusions reached by a model in order to narrow
the part of other models that has to be taken into account for reasoning). Chittaro et
al. (1993a) discussed how the functional model can be used in conjunction with other
models in order to perform the diagnostic task in a more focused way. It is possible,
for example, to start the diagnostic activity at the teleological level to diagnose
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Putting Functional Knowledge on Firmer Ground 257

possi ble errors made by the operator and/or orient the collection of symptoms using,
purposes of the system. Then, by exploiting the bridge between teleology and
behavior represented by functional knowledge, it is possible to consider the struc­
tural and behavioral models in a more focused way. This may result in a considerable
refinement of the conflict recognition activity that has to focus only on those parts
of the system responsible for the unachieved purposes.

Building an application based on multiple models such as Dynamis requires
development of large programs, where control becomes hard to handle and re­
usability of different models and reasoning utilities is at risk. We thus built a proper
software architecture (Chittaro et a!., 1992) that supports a modular and easy
insertion/retraction ofdifferent models and provides facilities for expressing control
at various abstract levels (problem, strategy, tactic). We followed the control
blackboard paradigm (Hayes-Roth, 1985) because it is especially suited for im­
plementing opportunistic reasoning strategies.

CONCLUSIONS

In this paper, we have illustrated the concept and the representation of function I
in the multimodeling approach. The main contributions of the presented work are I
as follows:

• a clear definition of the concept of function that disambiguates function from I

behavior and teleology

• a physical.ly sound basis for choosing the primitives of the functional I'

representation

• a general and theoretically founded framework for coherently integrating func-I
tional models with structural, behavioral, and teleological models

In our current research, we are focusing on the problem of automatically
selecting the most appropriate model for a reasoning task and are further studying
the application of the multimodeling approach in diagnosis and design, with par­
ticular attention to functional reasoning.
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