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Abstract—We contribute through this work to the design of
a novel variational framework able to match and recognize
multiple instances of multiple reference logos in image archives.
Reference logos as well as test images, are seen as constellations
of local features (interest points, regions, etc.) and matched by
minimizing an energy function mixing (i) a fidelity term that
measures the quality of feature matching (ii) a neighborhood
criterion which captures feature co-occurrence/geometry and
(iii) a regularization term that controls the smoothness of the
matching solution. We also introduce a detection/recognition
procedure and we study its theoretical consistency. Finally, we
show the validity of our method through extensive experiments on
the challenging MICC-Logos dataset overtaking, by 20%, baseline
as well as state-of-the-art matching/recognition procedures.

Index Terms—Context-dependent kernel, logo detection, logo
recognition.

I. INTRODUCTION AND RELATED WORK

THE expanding and massive production of visual data
from companies, institutions and individuals, and the

increasing popularity of social systems like Flickr, YouTube
and Facebook for diffusion and sharing of images and video,
have more and more urged research in effective solutions
for object detection and recognition to support automatic
annotation of images and video and content-based retrieval
of visual data [1], [2], [3]. Graphic logos are a special class
of visual objects extremely important to assess the identity
of something or someone. In industry and commerce, they
have the essential role to recall in the customer the expec-
tations associated with a particular product or service. This
economical relevance has motivated the active involvement of
companies in soliciting smart image analysis solutions to scan
logo archives to find evidence of similar already existing logos,
discover either improper or non-authorized use of their logo,
unveil the malicious use of logos that have small variations
with respect to the originals so to deceive customers, analyze
videos to get statistics about how long time their logo has been
displayed.

Logos are graphic productions that either recall some real
world objects, or emphasize a name, or simply display some
abstract signs that have strong perceptual appeal (see Fig.
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Fig. 1. (a) Examples of popular logos depicting real world objects, text,
graphic signs and complex layouts with graphic details; (b) Pairs of logos
with malicious small changes in details or spatial arrangements; (c) Examples
of logos displayed in real world images in bad light conditions, with partial
occlusions and deformations.

1(a)). Color may have some relevance to assess the logo iden-
tity. But the distinctiveness of logos is more often given by a
few details carefully studied by graphic designers, semiologists
and experts of social communication. The graphic layout is
equally important to attract the attention of the customer and
convey the message appropriately and permanently. Different
logos may have similar layout with slightly different spatial
disposition of the graphic elements, localized differences in
the orientation, size and shape, or – in the case of malicious
tampering – differ by the presence/absence of one or few traits
(see Fig. 1(b)).

Logos however often appear in images/videos of real world
indoor or outdoor scenes superimposed on objects of any
geometry, shirts of persons or jerseys of players, boards of
shops or billboards and posters in sports playfields. In most
of the cases they are subjected to perspective transformations
and deformations, often corrupted by noise or lighting effects,
or partially occluded. Such images – and logos thereafter –
have often relatively low resolution and quality. Regions that
include logos might be small and contain few information (see
Fig. 1(c)). Logo detection and recognition in these scenarios
has become important for a number of applications. Among
them, several examples have been reported in the literature,
such as the automatic identification of products on the web
to improve commercial search-engines [4], the verification of
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the visibility of advertising logos in sports events [5], [6],
[7], the detection of near-duplicate logos and unauthorized
uses [8], [9]. Special applications of social utility have also
been reported such as the recognition of groceries in stores
for assisting the blind [10].

A generic system for logo detection and recognition in
images taken in real world environments must comply with
contrasting requirements. On the one hand, invariance to a
large range of geometric and photometric transformations
is required to comply with all the possible conditions of
image/video recording. Since in real world images logos are
not captured in isolation, logo detection and recognition should
also be robust to partial occlusions. At the same time, espe-
cially if we want to discover malicious tampering or retrieve
logos with some local peculiarities, we must also require
that the small differences in the local structures are captured
in the local descriptor and are sufficiently distinguishing for
recognition.

A. Related Work

Early work on logo detection and recognition was concerned
with providing some automatic support to the logo registration
process. The system must check whether other registered logos
in archives of millions, exist that have similar appearance
to the newcoming logo image, in order to ensure that it is
sufficiently distinctive and avoid confusion [11], [12], [13],
[8], [14]. Kato’s system [15] was among the earliest ones.
It mapped a normalized logo image to a 64 pixel grid,
and calculated a global feature vector from the frequency
distributions of edge pixels. More recently, Wei et al. [9]
proposed a different solution, where logos were described
by global Zernike moments, local curvature and distance to
centroid. Other methods have used different global descriptors
of the full logo image either accounting for logo contours
or exploiting shape descriptors such as shape context [16],
[17]. All these methods assume that a logo picture is fully
visible in the image, is not corrupted by noise and is not
subjected to transformations. According to this, they cannot be
applied to real world images. Nevertheless, the use of global
descriptors for logo detection in real world images has been
proposed by several authors [18], [19], [20]. Phan et al. [19],
[20] considered pairs of color pixels in the edge neighborhoods
and accumulated differences between pixels at different spatial
distances into a Color-Edge Co-occurence Histogram [18].
This global descriptor permits to perform fast approximate
detection of logos, but is unsuited to deal with incomplete
information or transformed versions of the original logo, nor
to account for a precise representation of the locality of logo
traits.

Interest points and local descriptors were used by many
authors and appear much more appropriate to support detection
and recognition of graphic logos in real world images. In fact,
local visual descriptors like MSER [21], SIFT [22], SURF
[23], have been proved to be able to capture sufficiently
discriminative local elements with some invariant properties to
geometric or photometric transformations and are robust to oc-
clusions. In their seminal work, Sivic and Zisserman [24], [25],

exploited the bag of visual words approach to represent affine
covariant local regions from a codebook of SIFT descriptors;
visual words were weighted with tf-idf for large-scale retrieval.
They showed good capability to discriminate between objects,
and gave also examples of logo matching in unconstrained
environments. In their approach they did not account for
relationships between near keypoints but simply defined a
spatial proximity criterion, by checking the local context of
the 15 nearest neighbors of each feature match. In [26], logos
were described as bag of SIFT features for logo detection and
recognition in sequences of sports video. Taking bag of SIFTs
instead of bags of visual words has the advantage that only
a few highly distinctive keypoints are searched for matching
and the formation of the visual vocabulary is avoided. They
accounted for spatial relationships between local features by
performing iterative robust spatial clustering of the matched
features, using M-estimation and outlier rejection. Although
experiments showed that logos can be detected in very critical
conditions and under partial occlusions with both systems,
both methods only account for generic proximity and are
therefore unable to capture the small differences in details or
spatial layouts, and discover near duplicates.

Bag of SIFTs were also used by Joly and Buisson [27]
and Costantinopoulos et al. [7]. To discard the outliers they
performed geometric consistency checking, assuming the pres-
ence of affine geometric transformation between query and
target images. Particularly, in [27] the authors applied the
standard RANSAC algorithm to refine the initial set of feature
matches. In this way they introduce a geometric verification
according to a model (affine transformation) that could not be
consistent in practice. Chum et al. [28], and Wu et al. [29]
accounted for spatial proximity between visual words by
performing spatial geometric hashing. In this way they were
able to retrieve near duplicates in web images. However, while
effective for searching in very large datasets, spatial geometric
hashing does not permit a precise discrimination between local
peculiarities.

Accounting of context geometry is crucial for recognition of
individual objects in a scene and also for recognition of object
with localized peculiarities, and appears therefore necessary to
address the requirements of the problem at hand. Contextual
information at the image level, such as in the spatial pyramid
approach for whole-image categorization [30] is clearly not
appropriate. The joint distribution of the geometry of object
parts was considered by Fergus et al. [31] in constellation
models. But such approach is impractical in most of the cases,
since the complexity of the representation grows with the
number of parts and the model becomes too difficult to learn
when the number of parts is higher than a few units. Carneiro
and Jepson [32] suggested to group local image features in
flexible spatial models to improve matching accuracy between
images. In their approach, matched features are refined by
applying clustering and model verification based on semi-local
spatial constraints. Chum and Matas [33] considered a special
case where feature appearance is ignored and only spatial
relations between pairs of features are used. Pantofaru et al.
[34] introduced a method for object detection and localization
which combines regions generated by image segmentation
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with local patches. In particular, they defined the Region-
based Context Feature as the histogram of the (quantized)
local features near a segmented region, where the scale of
the local patches is used to define spatial proximity. Similarly,
Mortensen et al. [35] combined SIFT descriptors with a shape
descriptor of the point neighborhood (the “Global Context”)
very similar to shape context. All of these methods do not
appear appropriate to discriminate between slightly differing
traits. Bronstein and Bronstein [36] have recently proposed to
directly incorporate spatial information in the feature descrip-
tor. They defined spatially sensitive bags of pairs of features,
i.e. the distribution of near pairs of features. Particularly they
showed that such pairs may have affine invariance if the feature
transform and the canonical neighborhoods of the points are
affine covariant. However in this approach, the representation
is only affine covariant and has a very high dimensionality. So-
lutions for logo detection in unconstrained real world images,
with explicit account of local contexts were recently presented
by a few authors. Among them, Gao et al. [37] proposed
a two-stage algorithm that accounts for local contexts of
keypoints. They considered spatial-spectral saliency to avoid
the impact of cluttered background and speed up the logo
detection and localization. Unfortunately, their solution has
revealed to be very sensitive to occlusions. Kleban et al. [38]
employed a more complex approach that considers association
rules between frequent spatial configuration of quantized SIFT
features at multiple resolutions [39]. As reported also by the
authors, a major limitation of this approach is image resolution
since multiple local features are required to mine robust spatial
configurations. This makes the method very weak in case of
small or partially occluded logos.

B. Paper Contribution and Organization

In this paper, we present a novel solution for logo detection
and recognition which is based on the definition of a “Context-
Dependent Similarity” (CDS) kernel that directly incorporates
the spatial context of local features [40], [41]. The proposed
method is model-free, i.e. it is not restricted to any a priori
alignment model. Context is considered with respect to each
single SIFT keypoint and its definition recalls shape context
with some important differences: given a set of SIFT interest
points X , the context of x ∈ X is defined as the set of
points spatially close to x with particular geometrical con-
straints. Formally, the CDS function is defined as the fixed-
point of three terms: (i) an energy function which balances
a fidelity term; (ii) a context criterion; (iii) an entropy term.
The fidelity term is inversely proportional to the expectation
of the Euclidean distance between the most likely aligned
interest points. The context criterion measures the spatial
coherence of the alignments: given a pair of interest points
(fp, fq) respectively in the query and target image with a high
alignment score, the context criterion is proportional to the
alignment scores of all the pairs close to (fp, fq) but with
a given spatial configuration. The “entropy” term acts as a
smoothing factor, assuming that with no a priori knowledge,
the joint probability distribution of alignment scores is flat. It
acts as a regularizer that controls the entropy of the conditional

probability of matching, hence the uncertainty and decision
thresholds so helping to find a direct analytic solution. Using
the CDS kernel, the geometric layout of local regions can be
compared across images which show contiguous and repeating
local structures as often in the case of graphic logos. The
solution is proved to be highly effective and responds to the
requirements of logo detection and recognition in real world
images.

The rest of the paper is organized as follows. In Section II,
we report the definition of the “Context-Dependent Similarity”
function. Hence, in Section III, we discuss the adaptation of
this similarity function to the problem of logo detection in real
world images, and apply this function to align interest points.
We discuss the probability of point alignment in challenging
conditions; invariance properties are also discussed. Results
and comparative evaluations are presented in Section IV.

II. CONTEXT-DEPENDENT SIMILARITY

Let SX = {x1, . . . , xn}, SY = {y1, . . . , ym} be respec-
tively the list of interest points taken from a reference logo
and a test image (the value of n, m may vary with SX , SY ).
We borrow the definition of context and similarity design from
[40], [41], in order to introduce a new matching procedure
applied to logo detection. The main differences with respect
to [40], [41] reside in
• The use of context for matching. Context is used to

find interest point correspondences between two images
in order to tackle logo detection while in [40], context
was used for kernel design in order to handle object
classification using support vector machines.

• The update of the design model. Adjacency matrices
are defined in order to model spatial and geometric
relationships (context) between interest points belonging
to two images (a reference logo and a test image). These
adjacency matrices model interactions between interest
points at different orientations and locations resulting
into an anisotropic context, while in [40], context was
isotropic.

• The similarity diffusion process. Resulting from the
definition of context, similarity between interest points
is recursively and anisotropically diffused.

• The interpretation of the model. Our designed sim-
ilarity may be interpreted as a joint distribution (pdf)
which models the probability that two interest points
taken from SX×SY match. In order to guarantee that this
similarity is actually a pdf, a partition function is used as
a normalization factor taken through all the interest points
in SX × SY (and not over all the objects in a training
database as in [40]).

A. Context

The context is defined by the local spatial configuration of
interest points in both SX and SY . Formally, in order to take
into account spatial information, an interest point xi ∈ SX
is defined as xi = (ψg(xi), ψf (xi), ψo(xi), ψs(xi), ω(xi))
where the symbol ψg(xi) ∈ R2 stands for the 2D coordinates
of xi while ψf (xi) ∈ Rc corresponds to the feature of xi (in
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Fig. 2. This figure shows (on the left) a collection of SIFT points with their
locations, orientations and scales, and (on the right) the definition and the
partitioning of the context of an interest point xi into different sectors (for
orientations) and bands (for locations).

practice c is equal to 128, i.e. the coefficients of the SIFT
descriptor [22]). We have also an extra information about
the orientation of xi (denoted ψo(xi) ∈ [−π,+π]) which is
provided by the SIFT gradient and about the scale of the
SIFT descriptor (denoted ψs(xi)). Finally, we use ω(xi) to
identify the image from which the interest point comes from,
so that two interest points with the same location, feature and
orientation are considered different when they are not in the
same image; this is motivated by the fact that we want to take
into account the context of the interest point in the image it
belongs to. Let d(xi, yj) = ‖ψf (xi)− ψf (yj)‖2 measure the
dissimilarity between two interest point features, where ‖ · ‖2
is the “entrywise” L2-norm (i.e. the sum of the square values
of vector coefficients). The context of xi is defined as in the
following:

N θ,ρ(xi) = {xj : ω(xj) = ω(xi), xj 6= xi s.t. (i), (ii) hold},

with

ρ− 1

Nr
εp ≤ ‖ψg(xi)− ψg(xj)‖2 ≤

ρ

Nr
εp, (i)

and

θ − 1

Na
π ≤ ∠

(
ψo(xi), ψg(xj)− ψg(xi)

)
≤ θ

Na
π (ii)

where
(
ψg(xj)−ψg(xi)

)
is the vector between the two point

coordinates ψg(xj) and ψg(xi). The radius of a neighborhood
disk surrounding xi is denoted as εp and obtained by multi-
plying a constant value ε to the scale ψs(xi) of the interest
point xi. In the above definition, θ = 1, ..., Na, ρ = 1, ..., Nr
correspond to indices of different parts of that disk (see
Fig. 2). In practice, as we will show in the experimental
part of this paper (see Sect. IV), Na and Nr correspond
to 8 sectors and 8 bands. The definition of neighborhoods
{N θ,ρ(xi)}θ,ρ reflects the co-occurrence of different interest
points with particular spatial geometric constraints. Fig. 3
shows an example taken from two different images containing
the same logo (“Heineken”); the figure reports the context
definition for two corresponding keypoints, showing a similar
spatial configuration. All the definitions about interest points
in SY and their context are similar to SX .

Fig. 3. This figure shows an example of real context definition. The two
columns show the partitioning of the context of two corresponding interest
points; which belong to two instances of “Heineken”. In this example we
consider a context definition including 6 sectors and 8 bands.

B. Similarity Design

We define k as a function which, given two interest points
(x, y) ∈ SX × SY , provides a similarity measure between
them. For a finite collection of interest points, the sets SX ,
SY are finite. Provided that we put some (arbitrary) order
on SX , SY , we can view function k as a matrix K, i.e.
Kx,y = k(x, y), in which the “(x, y)−element” is the sim-
ilarity between x and y. We also represent with Pθ,ρ, Qθ,ρ

the intrinsic adjacency matrices that respectively collect the
adjacency relationships between the sets of interest points
SX and SY , for each context segment; these matrices are
defined as Pθ,ρ,x,x′ = gθ,ρ(x, x

′), Qθ,ρ,y,y′ = gθ,ρ(y, y
′)

where g is a decreasing function of any (pseudo) distance
involving (x, x′), not necessarily symmetric. In practice, we
consider gθ,ρ(x, x′) = 1{ω(x)=ω(x′)} × 1{x′∈N θ,ρ(x)}, so
the matrices P, Q become sparse and binary. Finally, let
Dx,y = d(x, y) = ‖ψf (x) − ψf (y)‖2. Using this notation,
the similarity K between the two objects SX , SY is obtained
by solving the following minimization problem

min
K

Tr
(
K D

′)
+ β Tr

(
K log K

′)
− α

∑
θ,ρ

Tr
(
K Qθ,ρ K′ P′θ,ρ

)
(1)

s.t.

{
K ≥ 0

‖K‖1 = 1

Here α, β ≥ 0 and the operations log (natural), ≥ are applied
individually to every entry of the matrix (for instance, logK
is the matrix with (logK)x,y = log k(x, y)), ‖ · ‖1 is the
“entrywise” L1-norm (i.e., the sum of the absolute values of
the matrix coefficients) and Tr denotes matrix trace.

The first term, in the above constrained minimization prob-
lem, measures the quality of matching between two features
ψf (x), ψf (y). In our case this is inversely proportional to
the distance, d(x, y), between the 128 SIFT coefficients of x
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and y. A high value of Dx,y should result into a small value
of Kx,y and vice-versa. The second term is a regularization
criterion which considers that without any a priori knowledge
about the aligned interest points, the probability distribution
{Kx,y : x ∈ SX , y ∈ SY } should be flat so the negative
of the entropy is minimized. This term also helps defining
a direct analytic solution of the constrained minimization
problem (1). The third term is a neighborhood criterion which
considers that a high value of Kx,y should imply high values
in the neighborhoods N θ,ρ(x) and N θ,ρ(y). This criterion also
makes it possible to consider the spatial configuration of the
neighborhood of each interest point in the matching process.
This minimization problem is formulated by adding an equal-
ity constraint and bounds which ensure a normalization of
the similarity values and allow to see K as a probability
distribution.

C. Solution

Let’s consider the adjacency matrices {Pθ,ρ}θ,ρ, {Qθ,ρ}θ,ρ
related to a reference logo SX and a test image SY respec-
tively, each of which collects the adjacency relationships be-
tween the image interest points for a specific context segment
θ, ρ. It is possible to show that the optimization problem (1)
admits a unique solution K̃, under some constrains.

Proposition 1: Let u denote the matrix of ones and intro-
duce

ζ =
α

β

∑
θ,ρ

‖Pθ,ρuQ′θ,ρ + P′θ,ρuQθ,ρ‖∞,

where ‖ · ‖∞ is the “entrywise” L∞-norm. Provided that the
following two inequalities hold

ζ exp(ζ) < 1 (2)
‖ exp(−D/β)‖1 ≥ 2 (3)

the optimization problem (1) admits a unique solution K̃,
which is the limit of the recursive form

K(t) =
G(K(t−1))

‖G(K(t−1))‖1
, (4)

with

G(K) = exp

{
− D

β
+
α

β

∑
θ,ρ

(
Pθ,ρKQ′θ,ρ + P′θ,ρKQθ,ρ

)}
,

(5)
and

K(0) =
exp(−D/β)

‖ exp(−D/β)‖1

Besides K(t) satisfy the convergence property:

‖K(t) − K̃‖1 ≤ Lt‖K(0) − K̃‖1 (6)

with L = ζ exp(ζ).

Proof: This solution is a variant of the one found in [41].
The demonstration given in [41] still holds in this case.

Notice that at the convergence stage, we omit t in all K(t)

so the latter will simply be denoted as K.

Algorithm 1: CDS Logo Detection and Recognition
Input: Reference logo image: IX , Test image: IY , CDS

parameters: ε,Na, Nr, α, β, τ .
Output: A boolean value determining whether the

reference logo in IX is detected in IY .

Extract SIFT from IX , IY and let SX := {x1, . . . , xn},
SY := {y1, . . . , ym} be respectively the list of interest
points taken from both images;

for i← 1 to n do
Compute the context of xi, given ε,Na, Nr;

for j ← 1 to m do
Compute the context of yj , given ε,Na, Nr;

Set t← 1, maxt ← 30;
repeat

for i← 1 to n do
for j ← 1 to m do

Compute CDS matrix entry K
(t)
xi,yj , given

α, β;

Set t← t+ 1;
until convergence (i.e.,

∥∥K(t) −K(t−1)
∥∥
2
 0) OR

t > maxt ;

K← K(t);

for i← 1 to n do
for j ← 1 to m do

Compute Kyj |xi ←
Kxi,yj∑m
s=1 Kxi,ys

;

A match between xi and yj is declared iff
Kyj |xi >

∑m
s6=jKys|xi ;

if number of matches in SY > τ |SX | then
return true; // i.e. logo detection

else
return false;

III. LOGO DETECTION AND RECOGNITION

Application of CDS to logo detection and recognition
requires to establish a matching criterion and verify its prob-
ability of success.

Let R ⊂ R2 × R128 × [−π,+π] × R+ denote the set of
interest points extracted from all the possible reference logo
images (see Section II-A) and X a random variable standing
for interest points in R. Similarly, we define T ⊂ R2×R128×
[−π,+π] × R+ as the set of interest points extracted from
all the possible test images (either including logos or not)
and Y a random variable standing for interest points in T .
X and Y are assumed drawn from existing (but unknown)
probability distributions. Let’s consider SX = {X1, . . . , Xn},
SY = {Y1, . . . , Ym} as n and m realizations with the same
distribution as X and Y respectively. To avoid false matches
we have assumed that matching between YJ and X is assessed
iff

KYJ |X ≥
m∑
j 6=J

KYj |X , (7)
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being KY |X = KX,Y /
(∑m

j=1 KX,Yj

)
.

The intuition behind the strong criterion above comes from
the fact that when KYJ |X �

∑m
j 6=J KYj |X , the entropy of

the conditional probability distribution K.|X will be close to
0, so the uncertainty about the possible matches of X will be
reduced. The reference logo SX is declared as present into the
test image if, after that the match in SY has been found for
each interest point of SX , the number of matches is sufficiently
large (at least τ |SX | for a fixed τ ∈ [0, 1], being 1 − τ the
occlusion factor tolerated). We summarize the full procedure
for logo detection and recognition in Algorithm 1.

A. Theoretical Foundation of Our Matching Algorithm

A theoretical lower bound to the probability of finding
correct matches using criterion (7) can be obtained from Eq. 5,
under the hypothesis of correct matches in SX × SY (i.e. the
reference logo exists in the image). This hypothesis is referred
to as H1. Similarly H0 (the null hypothesis) stands for the
incorrect matches in SX × SY .

Assuming without a loss of generality, that all the entries
of the left-hand side term of Eq. 5 (i.e, exp(−D/β)) are
identical, for a fixed τ ∈ [0, 1], it appears clearly that the
context term (the right-hand side term inside the exponential)
is highly influential and that the probability of finding correct
matches is dependent on setting of the parameters α/β and
q = NaNr (i.e. the fixed number of cells in the context) and
also n (i.e. the number of SIFT points in the query image).

Proposition 2: Let (.)+ denote the positive part of any real
valued function. For a fixed τ ∈]0, 1], one may show that

P

(
KYJ |X ≥

m∑
j 6=J

KYj |X

)
≥

(
1− ν
1 + ν

)
+

, (8)

here ν = (m − 1)

(
q2 − 1 + exp(2α/β)

q2 − τq + τq exp(2α/β)

)qn
and the

probability is w.r.t. X,Y1, . . . , Ym, with (X,YJ) ∈ H1,
(X,Yj) ∈ H0.
Provided that τ � 1/q,

ν
n→+∞−→ 0 and P

(
KYJ |X ≥

m∑
j 6=J

KYj |X

)
n→+∞−→ 1.

Proof: The proof of the proposition above is given in
Appendix A.

Fig. 4 compares theoretical expectations with measured
performance, as a function of α/β, q, n and shows that
with appropriate settings of these parameters, criterion (7) is
able to find (almost all) the correct matches while discarding
the incorrect ones. Empirical matchings are obtained on a
validation set including a subset of “matches” and a subset
of “non matches”. The two sets were automatically generated
(i) by embedding reference logos into test images at random
locations so the ground-truth of “matches” and “non-matches”
can be automatically recovered (these reference logos and
test images belong to the MICC-Logos dataset), and (ii) by
adding a uniformly distributed noise to the test images. Since
logos can be partially occluded, it has been assumed that the

reference logo is still detectable even though half-occluded in
the test image, so setting τ = 0.5 in the first three curves
reported in the figure.

Fig. 4 shows also the evolution of the lower bound in (8)
and empirical matching results with respect to the occlusion
factor 1 − τ (in the fourth curve reported in the figure). For
each value of τ , we automatically generate a validation set as
described earlier but the logos of test images are now partially
and randomly occluded with a factor 1−τ . According to Fig. 4,
as the amount of occlusion decreases (i.e., τ increases), the
probability of finding correct matches increases, when using
criterion (7), and reaches a very high value just when τ = 0.5,
i.e. even though logos are half-occluded. Can be noticed that
though the method is tolerant with respect to τ < 1, it remains
highly selective, so it can be used effectively also to detect
near-duplicates.

B. Properties and Considerations

The adjacency matrices Pθ,ρ, Qθ,ρ in K (see Eq. 4 and 5),
provide the context and the intrinsic geometry of the reference
and the test logos SX , SY . It is easy to see that Pθ,ρ, Qθ,ρ

are translation and rotation invariant and can also be made
scale invariant when the support (disk) of the context (i.e.
its radius εp) is adapted to the scales of ψg(SX) and ψg(SY )
respectively. It follows that the right-hand side of our similarity
K is invariant to any 2D similarity transformation. Notice,
also, that the left-hand side of K may involve similarity
invariant features ψf (.) (actually SIFT features), therefore K
– and also our matching criterion (7) – is similarity invariant.
The context can also be defined on other supports (rectangles,
etc.) and can be made invariant to other transformations
including affine and non-linear.

By taking β “not too large”, one can ensure that (3) holds.
Then by taking “small enough” α, inequality (2) can also
be satisfied. Note that α = 0 corresponds to a similarity
which is not context-dependent (i.e. context-free, following
our nomenclature). So, in this case, the similarities between
neighbors are not taken into account to assess the similarity
between two interest points. Besides our choice of K(0) is
exactly the optimum (and fixed point) for α = 0.

One important aspect of the method that has influence on
the performance and suits to logo detection/recognition is that
the local context is recursively defined. In particular, we assess
that two interest points match if their local neighbors match,
and if the neighbors of their local neighbors match too, etc.
The recursive form of our solution allows us to iteratively
diffuse the similarity using larger and more precise context
so providing increased precision of matching (see Fig. 5).
Another interesting aspect is that the energy function in (1) is
model-free, so no a-priori alignment model is used in order to
design the similarity and to find the set of matches in SX×SY .
This avoids to assume a-priori hypothesis that could not fit
with the observations.

To have partitioned the neighborhood into several cells
corresponding to different degrees of proximity has lead to
significant improvements of our experimental results. On the
one hand, the constraint (2) becomes easier to satisfy, for
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Fig. 4. These figures show the evolution of the probability of finding correct matches using criterion (7). Dashed curves correspond to the empirical measures
found experimentally, while solid curves correspond to the lower bounds in (8). The evolution of these curves is shown with respect to log(α/β), q, n and
τ respectively. Settings used are α/β = 1, q = 4 and τ = 0.5; n and m vary with respect to reference and test images respectively. Note that q = 1
corresponds to isotropic context and α/β → 0 corresponds to context-free setting.

(t=1)(t=0)

(t=3)(t=2)

Fig. 5. This figure shows the reduction of false matches with respect to the number of iterations in CDS evaluation. At t = 0, CDS does not take into
account the context and this results into the many wrong matches. As t increases, matching results become precise as the diffusion of the similarity takes
into account larger and more precise context (dashed in figures). For ease of visualization only a subset of interest points and their matches are shown.

larger α with partitioned neighborhood, compared to [40].
On the other hand, when the context is split into different
parts, we end up with a context term, in the right-hand side
of the exponential (5), which grows slowly compared to the
one presented in our previous work [40] and grows only
if similar spatial configurations of interest points have high
similarity values. Therefore, numerically, the evaluation of that
term is still tractable for large values of α which apparently
produces a more positively influencing (and precise) context-
dependent term in (1). Fig. 6 shows an example of our context
dependent matching and detection results (figures on the right)
with respect to context-free ones (figures on the left). Bottom
histograms show the conditional probability distribution K.|X

for a particular interest point X in the reference logo. This
distribution is peaked when using context dependent similarity
so the underlying entropy is close to 0 and the uncertainty
about possible matches is dramatically reduced.

From criterion (7) and its theoretical bound (8), several
considerations follow. Under the H1 hypothesis, i.e. the hy-
pothesis that the reference logo exists in the image, the lower
bound in (8) increases with respect to n, q, while it decreases
with respect to m. Notice that typically n� m and also that
this bound is useless when q = 1 (i.e., when the context is
isotropic) and when q → ∞ (i.e., when the number of cells
in the context is extremely large leading to overfitting).

The τ element provides a measure of the fraction of
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Fig. 6. This figure shows a comparison of the matching results when using
a context-free strategy and our context dependent matching. Bottom figures
show the conditional probability distribution K.|X for a particular interest
point X in the reference logo. This distribution is peaked when using context
dependent similarity so the underlying entropy is close to 0 and the uncertainty
about possible matches is dramatically reduced. Top figures show the matching
results between the reference logo and the test image which are correct using
the context dependent matching framework.

interest points that are considered sufficient to assess the
presence/absence of a reference logo in a test image. Typically
we cannot know a priori what is the amount of occlusion that
we may have in test images. Setting τ to a very small value
makes the false acceptance rate high, while setting it to a high
value makes the false rejection rate high; therefore, setting τ
to 0.5 is a kind of compromise that works satisfactorily when
no knowledge is available. If we want to detect a portion of
a logo even though manipulated or even it has many variants,
then we should have tolerance to occlusion. As an example of
this aspect, Fig. 7 shows logo detections with different values
of τ . Bound (8) shows that performance does not degrade
too much when logo structure is different, i.e. some points in
reference logo do not have matches in test images. Context
remains stable and discriminative. If we want to detect only
“exact copies” of logos with only some noise and geometric
(similarity) transformations, then we should set τ close to 1
(Fig. 4 also corroborates this aspect showing that the method
is very selective without the need of rising the threshold too
much). Under H0, criterion (7) is very strong and difficult to
satisfy (i.e. its probability of success is O(1/m)→ 0) and this
prevents from creating wrong matches.

IV. BENCHMARKING

In order to show the effectiveness of our context dependent
matching strategy (i.e., based on CDS) with respect to other
approaches, we evaluate the performances of multiple-logo
detection on a novel challenging dataset called MICC-Logos,
containing 13 logo classes each one represented with 15− 87
real world pictures downloaded from the web, resulting into a

Fig. 7. Examples of logo detections with different parameters of τ (0.25,
0.5 and 0.8, respectively). As τ increases logo detection is more sensitive to
occlusion. In this experiment, α = β = 0.1 and Na = Nr = 8.

collection of 720 images (see Fig. 8) 1. The image resolution
varies from 480 × 360 to 1024 × 768 pixels. Interest points
are extracted from test images as well as reference logos, and
encoded using SIFT features. Each test image SY is processed
in order to evaluate the similarity function K (shown previ-
ously in Eq. 4) with respect to each reference logo SX , using
Gaussian power assist setting: K(0)

x,y = exp(−d(x, y)/β).

A. Setting

The setting of β is related to the Gaussian similarity (i.e.,
exp(−D/β)) as the latter corresponds to the left-hand side
(and the baseline form) of K(t), i.e. when α = 0. Since the 128
dimensional SIFT features, used to compute D, have a unit L2

norm and hence belong to a hypersphere of radius r (r = 1),
a reasonable setting of β is 0.1r which also satisfies condition
(3) in our experiments. The influence (and the performance) of
the right-hand side of K(t), α 6= 0 (context term) increases as
α increases nevertheless and as shown earlier, the convergence
of K(t) to a fixed point is guaranteed only if Eq. 2 is satisfied.
Intuitively, the weight parameter α should then be relatively
high while also satisfying condition (2). Following the lower
bounds and the empirical measures shown in Fig. 4, it is easy
to see that the best matching performance is achieved when
α/β = 1 (in our experiments we set α = β = 0.1 and Nr =

1The MICC-Logos dataset is available on request at the following webpage:
http://www.micc.unifi.it/vim/datasets/micc-logos
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“Agip” “Apple” “Barilla” “Birra Moretti” “Cinzano”
15 52 49 30 67

“CocaCola” “Esso” “Ferrari” “Heineken” “Marlboro”
78 86 63 49 52

“McDonalds” “Pepsi” “Starbucks”
52 40 87

Fig. 8. MICC-Logos dataset. Logo classes: the number of test images is
reported for each class.
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Fig. 9. This figure shows a comparison of logo detection using our (i) context-
dependent similarity and (ii) context-free one (actually Gaussian). FAR and
FRR rates are shown for each class. In these experiments, β = α = 0.1
and τ = 0.5 while n and m vary of course with reference logos and test
images. Excepting the logos “Apple” and “Mc Donald’s” (which contain very
few interest points n < 12), the FRR errors are almost always significantly
reduced while FAR is globally reduced.

Na = 8) and this setting also guarantees conditions in Eqs. 2, 3
and therefore the convergence of CDS to a fixed point. In
practice, we observe that convergence usually happens in less
than 3 iterations. However, the other interest from convergence
is to save time, as one may stop the iterative process before
reaching the upper bound on the number of iterations (we set
the max number of iterations to 30).

B. Logo Detection Performance
Logo detection is achieved by finding for each interest point

in a given reference logo SX its best match in a test image
SY ; if the number of matches is larger than τ |SX | (for a fixed
τ ∈]0, 1]), then the reference logo will be declared as present
into the test image. Different values of τ were experimented
and performances are measured using False Acceptance and
False Rejection Rates (denoted as FAR and FRR, respectively):

FAR =
# of incorrect logo detection

# of logo detections
;

FRR =
# of unrecognized logo appearance

# of logo appearances
.

Table I reports these FAR and FRR results; setting τ to
0.5 guarantees a high detection rate at the detriment of a
small increase of false alarms. Diagrams in Fig. 9 show
FAR and FRR for the different classes in the MICC-Logos
dataset. We clearly see the out-performance of our context
dependent similarity (i.e., K(t), t ∈ N+) with respect to the
baseline context-free similarity (i.e., K(0)). For almost all
the classes, the improvement brought by CDS is clear and
consistent. Figure 11 shows some examples of logo detection
results, obtained using the parameters reported in the previous
subsection.

TABLE I
PERFORMANCE OBTAINED USING CDS AND DIFFERENT VALUES OF τ .

NOTICE THAT FAR IS A DECREASING FUNCTION OF τ WHILE FRR IS AN
INCREASING FUNCTION.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FAR 0.28 0.22 0.2 0.19 0.18 0.18 0.17 0.17 0.17
FRR 0.1 0.11 0.11 0.12 0.12 0.13 0.13 0.14 0.14

C. Comparison and Discussion
Firstly, we compare our proposed CDS matching and de-

tection procedure against nearest-neighbor SIFT matching and
nearest-neighbor matching with RANSAC verification.

SIFT based logo detection follows the idea in [26] where
a reference logo is detected, in a test image, if the overall
number of SIFT matches is above a fixed threshold. SIFT
matches are obtained by computing for each interest point
in SX its Euclidean distance to all interest points in SY ,
and keeping only the nearest-neighbors. RANSAC based logo
detection follows the same idea but it introduces a model
(transformation) based criterion not necessarily consistent in
practice. This criterion selects only the matches that satisfy an
affine transformation between reference logos and test images.
The (iterative) RANSAC matching process, is applied as a
“refinement” of SIFT matching (a similar approach is used in
[27]). In both cases a match is declared as present iff Lowe’s
second nearest neighbor test is satisfied [22].

Secondly, we also compare our CDS logo detection al-
gorithm to two relevant methods that use context in their
matching procedure [25], [37]. The Video Google approach
[25] is closely related to our method as it introduces a spatial
consistency criterion, according to which only the matches
which share similar spatial layouts are selected. The spatial
layout (context) of a given interest point includes 15 nearest
neighbors that are spatially close to it. Given X ∈ SX ,
Y ∈ SY , points in the layouts of X and Y which also match
casts a vote for the final matching score between X and Y . The
basic idea is therefore similar to ours, but the main difference
resides in the definition of context in Video Google which is
strictly local 2. In our method the context is also local but
recursive; two interest points match if their local neighbors
match, and if the neighbors of their local neighbors match
too, etc, resulting into a recursive diffusion of the similarity
through the context (see Fig. 5).

2The context in Video Google is empirically set to 15 neighbors and it
does not take into account the scale of SIFT points. The number of accounted
neighbors may span random image areas depending on the content.
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Partial Spatial Context (PSC) logo matching [37] relies on
a similar context definition. Given a set of matching interest
points, it formulates the spatial distribution for this set (i) by
selecting a circular region that contains all these points, (ii) by
computing the scale and orientation of the set as the average
value of, respectively, all the scales and orientations of the
points, (iii) by partitioning the distribution of these points in 9
cells. Starting from this context definition, PSC histograms
are computed for both reference logos and test images. A
PSC histogram is defined as the number of matches lying
in each cell, and logo matching is performed by computing
the similarity between two PSC histograms. This schema is
efficient and quick to be computed, but its spatial (context)
definition is rough and is very sensible to outliers.

Table II and Fig. 10 show a comparison of the results
obtained by the five methods. Table II illustrates the FRR
performance for fixed FAR values and clearly shows that our
CDS method produces the lowest error rates compared to the
other methods. Fig. 10 shows the FAR and FRR errors class-
by-class on the MICC-Logos dataset.

D. Experiments on FlickrLogos-27

We report also results on another public dataset, the
FlickrLogos-27 image collection, to demonstrate the generality
of our method. It is a very recent dataset, obtained from Flickr
as our dataset, and the authors provide ground-truth for 27
logo classes and annotations for 4536 logo appearances. They
proposed a scalable logo recognition approach that extends the
common bag-of-words model and incorporates local geometry
in the indexing process. In their paper [42] are reported results
obtained using a common bag-of-words (bow) model vs their
multi-scale Delaunay Triangulation approach (msDT). Both
these methods use a codebook of quantized SIFT features.
Performances are reported in terms of accuracy by varying
the number of training images per class (within the interval
[5, 30]).

We performed experiments on the FlickrLogos-27 dataset
using our CDS method and following the same experimental
protocol proposed by the authors (please refer to [42] for
more details). Since our method does not provide a learning
phase, we followed the same procedure presented in the
previous sections using the “training images” as reference
logos. Therefore, if we have k training images, we iterate
k times our logo detection procedure (as reported in Algo-
rithm 1) and finally we assign to each test image the label
corresponding to the reference image that maximizes criterion
(7). We report the results in Fig. 12 compared to bow and
msDT. As demonstrated by this figure, our method guarantees
very good performance also using a single reference logo (i.e.
0.57 in accuracy, that is close to the best performance obtained
by the other two methods) and substantially outperforms both
methods with more reference images.

E. Computational Cost

The computational cost of our logo detection procedure is
mainly dominated by CDS evaluation. In particular, the key
part of the algorithm is the computation of the context term.
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Fig. 12. Performance of our approach vs bow and msDT [42] methods on
the FlickrLogos-27 dataset (query set). CDS is computed using α = β = 0.1,
Nr = Na = 8 and τ = 0.5.

Assuming K(t−1) known for a given pair of points (x, y),
the complexity is O(max(N2, s)); here s is the dimension of
ψf (x) (i.e. 128 since we use SIFT features) and N is given by
the maxx,θ,ρ #{N θ,ρ(x)} (i.e. the max number of points in
all the neighborhoods). When N <

√
s, evaluating our CDS

is equivalent to efficient kernels such as linear or intersection.
In worst cases N �

√
s and the evaluation of CDS should be

prohibitive. In practice it may only happen when the context
is too large (see Fig. 13). Anyway, using the same setting for
CDS used in the previous experiments, our method is able
to process images and checks for the existence of a reference
logo in less than 1s. This running time is achieved, on average
on our MICC-Logos dataset, on a standard 2.6GHZ PC with
2GB memory.
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Fig. 13. This figure shows the processing time in order to detect a reference
logo in a test image. Results are reported w.r.t. N the maximum number of
interest points in the cells of the context; here N varies w.r.t. reference images
(and of course increases as ε and n increase) and its values are quantized into
intervals [1, 10], ]10, 20], ]20, 30]. Note that all these performances were
obtained on a test image with 2568 interest points, α = β = 0.1 and τ = 0.5.
Results are not available when q = 16× 16 and N ∈ ]20, 30] as the context
is split into a large number of small cells so no cell in the context includes
more than 20 interest points.

V. CONCLUSION

We introduced in this work a novel logo detection and
localization approach based on a new class of similarities
referred to as context dependent. The strength of the proposed
method resides in several aspects: (i) the inclusion of the
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TABLE II
THIS TABLE SHOWS A COMPARISON OF OUR CDS METHOD WITH RESPECT TO SIFT, RANSAC, VIDEO GOOGLE AND PARTIAL SPATIAL CONTEXT (PSC)

MATCHING. THE FIRST ROW REPORTS FAR VALUES, WHILE EACH OTHER ROW THE CORRESPONDING FRR VALUE OBTAINED WITH EACH METHOD. IN
THESE EXPERIMENTS, CDS IS COMPUTED BY SETTING α = β = 0.1, Nr = Na = 8 WHILE τ VARIES IN ORDER TO HAVE FRR FOR DIFFERENT FAR.

FRR
FAR

0.299 0.181 0.125 0.094 0.075 0.06 0.051 0.043 0.037

CDS 0.093 0.151 0.187 0.216 0.249 0.279 0.292 0.309 0.325
SIFT 0.264 0.348 0.394 0.452 0.503 0.544 0.571 0.589 0.622

RANSAC 0.253 0.340 0.381 0.407 0.423 0.434 0.444 0.457 0.477
Video Google [25] 0.237 0.304 0.350 0.395 0.427 0.448 0.469 0.508 0.538
PSC matching [37] 0.248 0.330 0.371 0.403 0.433 0.467 0.493 0.524 0.551
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Fig. 10. This figure shows a comparison of logo detection using our (i) context-dependent similarity, (ii) SIFT, (iii) RANSAC and (iv) Video Google. FAR
and FRR rates are shown for each class. In these experiments, α = β = 0.1, Nr = Na = 8 and τ = 0.5.

(a) (b)
Fig. 11. These pictures show some examples of logo detection results. In particular (a) shows examples of matching in case of partial appearance, perspective
transformations and low resolution, while (b) shows examples of matching in case of deformations. The default parameters used in these experiments correspond
to α = β = 0.1, Nr = Na = 8 and τ = 0.5.

information about the spatial configuration in similarity design
as well as visual features, (ii) the ability to control the
influence of the context and the regularization of the solution
via our energy function, (iii) the tolerance to different aspects
including partial occlusion, makes it suitable to detect both
near-duplicate logos as well as logos with some variability in
their appearance, and (iv) the theoretical groundedness of the
matching framework which shows that under the hypothesis of
existence of a reference logo into a test image, the probability
of success of matching and detection is high.

Further extensions of this work include the application of
the method to logo retrieval in videos and also the refinement

of the definition of context in order to handle other rigid and
non-rigid logo transformations.

APPENDIX
PROOF OF PROPOSITION 2

Proof: Let N θ,ρ
X,Y be a random variable standing for the

number of matches falling in the context cell (θ, ρ) of X , Y
(here X , Y belong respectively to a reference logo and a test
image). It is easy to see that under H1, N θ,ρ

X,Y → B(n, τ/q)

while under H0, N θ,ρ
X,Y → B(n, 1/q2), q is the fixed number

of cells in the context. Again, assuming the left-hand side term
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in (4) constant, KYJ |X may be written

KYJ |X :=
1

ZX
exp

(
γ NX,YJ

)
, (9)

here γ = 2α
β and NX,Y denotes the number of matching pairs

in the context of X , Y

NX,Y =

q∑
θ,ρ

N θ,ρ
X,Y , (10)

and ZX is the partition function of K.|X given by

ZX = exp
(
γ NX,YJ

)
+
∑
j 6=J

exp
(
γ NX,Yj

)
. (11)

Under the hypothesis that (X,YJ) ∈ H1 and (X,Yj) ∈ H0,
j 6= J , our goal is to lower bound ps

ps = P

(
KYJ |X ≥

∑
j 6=J

KYj |X

)
. (12)

Since KYJ |X +
∑
j 6=J

KYj |X = 1, the above probability is

ps = P

(
KYJ |X ≥ 1/2

)
= P

(∑
j 6=J

KYj |X < 1/2

)
= 1− P

(∑
j 6=J

KYj |X ≥ 1/2

)
.

(13)

By Markov Inequality,

ps ≥ 1− 2 E

(∑
j 6=J

KYj |X

)
= 1− 2 E

(
1−KYJ |X

)
= 2 E

(
KYJ |X

)
− 1

= 2 E

(
1

1 + C

)
− 1,

(14)

here the expectation is with respect to {X,X1, . . . , Xn},
{Y1, . . . , Ym} and

C =
1

exp
(
γ NX,YJ

) ∑
j 6=J

exp
(
γ NX,Yj

)
. (15)

As 1/(1 + C) is convex w.r.t. C, Jensen’s Inequality leads to

ps ≥ 2

(
1

1 + E(C)

)
− 1

=
2 E exp(γ NX,YJ )

E exp(γNX,YJ ) +
∑
j 6=J

E exp(γ NX,Yj )
− 1,

(16)
which also results from the independence of terms involved in
the sum and the product in (15).

Let Φt(Z) = E exp(tZ), t ∈ R be the moment generating
function of a given random variable Z. For a collection of i.i.d

random variables Z1, . . . , Zn with the same distribution as Z,
one may show that

Φt(Z1 + · · ·+ Zn) =
(
Φt(Z)

)n
(17)

As (10) is the sum of mutually independent binomials, Equa-
tions (16) and (17) imply

ps ≥
2 Φγ(N θ,ρ

X,YJ
)q

Φγ(N θ,ρ
X,YJ

)q + (m− 1)Φγ(N θ,ρ
X,Yj

)q
− 1, (18)

with

Φγ(N θ,ρ
X,YJ

) =
(
1− τ/q + τ exp(2α/β)/q

)n
Φγ(N θ,ρ

X,Yj
) =

(
1− 1/q2 + exp(2α/β)/q2

)n (19)

If we replace (19) into (18), and provided that τ � 1/q, we
obtain our main result

ps ≥
(

1− ν
1 + ν

)
+

n→+∞−→ 1, (20)

with ν = (m−1)

(
q2 − 1 + exp(2α/β)

q2 − τq + τq exp(2α/β)

)qn
n→+∞−→ 0
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