
Accurate self-calibration of two cameras by observations of a moving person on a
ground plane

Tsuhan Chen Alberto Del Bimbo, Federico Pernici
and Giuseppe Serra

Advanced Multimedia Processing Lab Dipartimento Sistemi e Informatica
Carnegie Mellon University University of Florence

Pittsburgh, PA, U.S.A. Florence, Italy

Abstract

A calibration algorithm of two cameras using observations
of a moving person is presented. Similar methods have
been proposed for self-calibration with a single camera, but
internal parameter estimation is only limited to the focal
length. Recently it has been demonstrated that principal
point supposed in the center of the image causes inaccu-
racy of all estimated parameters. Our method exploits two
cameras, using image points of head and foot locations of
a moving person, to determine for both cameras the focal
length and the principal point. Moreover with the increas-
ing number of cameras there is a demand of procedures to
determine their relative placements. In this paper we also
describe a method to find the relative position and orienta-
tion of two cameras: the rotation matrix and the translation
vector which describe the rigid motion between the coordi-
nate frames fixed in two cameras. Results in synthetic and
real scenes are presented to evaluate the performance of the
proposed method.

1. Introduction
The observation and recognition of human activity is one
of the most important problem in visual surveillance. This
problem is greatly simplified when cameras are calibrated,
namely when the internal and external parameters of cam-
eras are available.
For example, an accurate camera calibration is useful to
compute the distance from a protected zone or to determine
if people are walking or running. Moreover camera cali-
bration has been used in tracking systems to accommodate
change in object scale and to infer the depth-order of mul-
tiple objects in occlusion [1]. Standard methods of camera
calibration use a calibration object or measurements of a
sufficient number of 3D points in the scene [3, 4]. Unfortu-
nately, such measurements are rarely available and difficult
to obtain and this has inspired research in self-calibration
methods. Vanishing points of parallel lines in 3D have also

Figure 1: The proposed method uses only corresponding
image points of foot and head location between cameras to
compute their internal parameters and their relative posi-
tion.

been used for this task [7, 6, 5]. These methods exploit van-
ishing points from static scene structures, such as buildings,
but they can not be applied in scenes without structures. Re-
cently a method that computes an approximate camera cali-
bration observing moving objects was proposed by Stauffer
et al. [9]. Criminisi et al. [10] describe how to perform 3D
measurements in world coordinate from a single camera us-
ing a person in a planar scene; this method does not deter-
mine explicitly the internal and external parameters. Lv et
al. [11] describe an algorithm to extract internal and exter-
nal parameters from single camera exploiting the periodic
motion of a walking human. This calibration method sup-
poses zero skew, unit aspect ratio and that the y-coordinate
of the principal point is half of the image height. Whereas
zero skew and unit aspect ratio are two reasonable assump-
tions, the hypothesis that one coordinate of principal point is
in the center of the image causes inaccuracy of all estimated
parameters. Indeed, Hartley et al. [12] have proved that the
determination of the focal length of the camera is tied very
closely to the estimate of the principal point. Moreover,
small changes in the estimated (sometimes merely guessed)
principal point can cause very large changes in the esti-
mated focal length.
The works of Nils et al. [19] and Junejo et al. [24] propose

two methods for self-calibration of a single camera exploit-
ing the homology between head and foot image points of a

1



Figure 2: 1) Original image 2) Foot and head localization
with shadow 3) Shadow detection 4) Foot and head local-
ization after shadow removal.

moving person on a ground plane; only the focal length is
computed.
Self-calibration of multiple views from observations of peo-
ple has been studied as well. Liebowitz et al. [21] and
Tresadern et al. [20] propose two self-calibration cameras
methods using constraints of the articulated human struc-
ture, specifically the constant length between rotation joints
over time. The main limit of these methods is the joints lo-
calizations accuracy. Sinha et al. [23] propose a method
for self-calibration of cameras networks using silhouette of
a person, but they need three or more views.
In this paper we present a method for calibration of two
cameras based on features of a moving person in their com-
mon field of view. We use only the image of foot and head
locations and we show how these points and their geomet-
ric relationship between cameras give enough information
to find their relative position and orientation and the inter-
nal parameters of each camera, (i.e. the focal length and the
principal point). We assume, like the previous methods, that
the cameras have zero skew and unit aspect ratio.
The proposed self-calibration method works under the as-
sumption that the scene needs to be modeled well with a
dominant ground plane and the person is considered as a
vertical segment of constant height. In particular the infinite
homography, obtained from the fundamental matrix and the
projective proprieties of the foot and head image locations,
is exploited to transfer a linear constraint to one camera to
the other. The height of the moving person must be identi-
fied in order to fix the scale factor of the translation vector.
When multiple people are present in the scene, calibration
can be performed individually on each of them.
The rest of the paper is organized as follows. The algorithm
to determine the foot and head location is presented in Sec-

tion 2. The method to compute the vanishing point, vanish-
ing line and infinite homography is presented in Section 3.
The approach to obtain internal parameters is presented in
Section 4. The approach to obtain relative position of two
cameras is presented in Section 5. Results are presented in
Section 6 and the paper is concluded in Section 7.

2 Foot and head localization
To determine the moving objects in the scene the Gaussian
Mixture Model (GMM) for background subtraction [13] is
used. After localization, each moving blob is processed by
the detector described by Saptharishi et al. [15] to deter-
mine if it is a person or not. Once the person is identified,
the head and foot positions can be found by intersecting the
smallest box around the person with its main axis (com-
puted by the second order moment). Besides, for the save
of effectiveness we use a shadow detection method [16] that
converts the image from RGB color space to HSV color
space and checks the chromaticity and the luminance (fig
2).

3 Vanishing point, Vanishing line and
Infinite Homography

Considering different positions of a person on a ground
plane, the lines passing through the head and the foot lo-
cations of each position are parallel and they intersect in a
point at infinity. The image location of this point is a van-
ishing point, v∞. Thus the vanishing point is computed
intersecting all the image lines.
In addition, since the height of a person is the same all
frames, for each couple of different person positions the line
passing through heads and the line passing through feet are
parallel and intersect in a vanishing line at infinity. The im-
age of it is defined as the vanishing line, l∞.
To ensure robustness of the vanishing points and lines esti-
mation the RANSAC algorithm is used.
Moreover, for each frame we exploit the histogram distance
defined in [17] to determine the matching person between
two cameras. Thus, we have corresponding image points of
foot and head between the cameras. The Fundamental ma-
trix can be computed using corresponding image points of
foot and head. In our situation, the head and foot locations
form two planes respectively and thus the Fundamental Ma-
trix can be computed by 6 image point correspondences and
not 8 correspondences [18]. We can use 4 foot correspon-
dences and 2 head correspondences or 4 head correspon-
dences and 2 foot correspondences. Moreover we suppose
that our cameras are synchronized (if the cameras are not
synchronized it is possible to use the algorithm proposed by
Caspi et al. [14]).
Once the vanishing points and vanishing lines of both cam-
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eras and the Fundamental Matrix are recovered, the Infinite
Homography matrix can be computed [18].

4 Computation of internal camera
parameters

Constraints on intrinsic camera parameters are enforced in
terms of the absolute conic ω (ω = K−TK−1, where K is
the intrinsic parameters matrix). Once ω is known, K can be
computed by Cholesky decomposition of ω.
The matrix ω is symmetric, 3×3 matrix, defined up to scale,
with five degrees of freedom. At least five constraints are
needed to determine ω uniquely.
The zero skew assumption gives one linear constraint in
ω, ω12 = ω21 (where the low characters identify the row
and column of the element into the matrix ω respectively).
The square pixel assumption gives another linear constraint
ω11 = ω22 [18]. Furthermore, two linear constraints on
ω result from the vanishing point and vanishing line aris-
ing from the ground plane and his vertical direction, l∞ =
ωv∞.
Once the Infinite Homography H∞ is known (sec. 3), the
following equation can be used[18]:

ω′ = H−T
∞ ωH−1

∞ (1)

where ω and ω′ are the image of the absolute conic in the
first and in the second camera respectively. This equation
gives a linear relation between ω and ω ′; then zero skew as-
sumption in the second camera gives one linear constraint.
Finally ω can be computed linearly using the equations
found before. Of course the same method can be used to
find ω′.

5 Relative position and orientation of
two cameras

Once the Fundamental matrix and the intrinsic camera ma-
trix for each camera are known the Essential matrix can
be computed. The relative position and relative orienta-
tion, namely the rotation matrix R and the translation vector
t which describe the rigid motion between the coordinate
frames fixed in two cameras, are extracted from the essen-
tial matrix [18]. It’s known that this method finds four so-
lutions. The correct solution is obtained by testing a single
point X located in front of both cameras. The intersection
of the plane G (see fig. 3) and the a ray back-projected from
one image point of the first camera gives the searched 3D
point. Note that the image point of the first camera can not
be chosen randomly, because the 3D point may be not lo-
cated in front of the second camera. According to this, one
image foot correspondence is chosen.
We start considering two coordinate frames, one fixed

Figure 3: The figure shows all used coordinate frames,
in particular it shows the first-camera coordinate frame
(x′, y′, z′), world cooridnate frame (x, y, z) and the new co-
ordinate frame (x′′, y′′, z′′).

with the origin in the first camera center and the z-axis
posed on principal axis (first-camera coordinate frame C ≡
(x′, y′, z′)) and the other one posed with x-axis and z-axis
on the ground plane and the y-axis passing through the ori-
gin of C (world coordinate frame W ≡ (x, y, z)). The fig.
3 shows these coordinate frames. First of all we determine
the rotation and translation of the first camera respect to W .
The first camera projection matrix wrt the world coordinate
frame is:

P = K1[R1|t1] (2)

where

K1 =

⎡
⎣f 0 u0

0 f v0

0 0 1

⎤
⎦ (3)

R1 =

⎡
⎣cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0
0 0 1

⎤
⎦

⎡
⎣1 0 0
0 cos(β) − sin(β)
0 sin(β) cos(β)

⎤
⎦

⎡
⎣cos(α) 0 − sin(α)

0 1 0
sin(α) 0 cos(α)

⎤
⎦

(4)

t1 =

⎡
⎣ 0
−h1

0

⎤
⎦ (5)

where K1 is the internal matrix of the first camera, R1 is the
rotation matrix from W to C, t1 is the translation vector
from the origin of W to the origin of C and h1 is the height
of the camera from the ground plane.

To determine γ and β we note that the vanishing point
v∞ is the image point of V∞ = [0, 0, 1, 0]T . Given the
projective matrix P = [p0,p1,p2,p3] (where pi is the i-th
column of P), we have v∞ = [v1, v2, v3]T = PV∞ = p2 =
[p1, p2, p3]T . This gives the following equation:

v2

v3
=

p2

p3
= v0 + f1 cos(γ) cot(β). (6)

3



a) b)

Figure 4: Example of two images taken of two cameras in
the synthetic scene. a) First camera b) Second camera.

The vanishing line l∞ is the image of the line at infinity of
the planes parallel to the plane z = 0. The image point
of V0 = [1, 0, 0, 0]T and V1 = [0, 1, 0, 0]T are both on
the vanishing line and give p0 and p1 respectively. The
vanishing line is hence given by l∞ = [l1, l2, l3]T = p0 ×
p1, and so we can have:

l1
l2

= − tan(γ). (7)

From the equations (6) and (7) we can easily find γ and β.
Note that, in our case α is unknown, because the vanishing
point and the vanishing line do not give any constraints of
it.
The distance h1 between the first camera and the ground
plane of the eq. 5 is estimated by:

h1 =
1
N

∑
i

[
h/

(
1 − d(hi, ci)d(fi,v∞)

d(fi, ci)d(hi,v∞)

)]
(8)

where N is the number of the foot collection data, h is the
referent height of a person, hi, and fi are the image point of
head and foot of the i-th position of the moving person, c i

is the intersection of the line passing through h i and fi with
the vanishing line l∞. The equation 8 can be derived from
the cross ratio invariance [10]. The equation of the plane G
with respect to C can be determined. A point in the world
coordinate frame QW and the same point in the first-camera
coordinate frame QC are related by the following equation:

QC = R1(QW + t1). (9)

To determine the equation of the plane we take the origin
of the W , XW = [0, 0, 0]T . We choose this particular point
because it is independent wrt α and it belongs to the plane.
So using equation (9) we find XC . The normal plane in the
first-camera coordinate frame is n = KT l∞. Once the nor-
mal plane and a point on it are known the equation of the
plane is recovered.
Furthermore taking an image point correspondence of foot,
q and q′, the back-projected ray of q intersects the plane G
in the searched 3D point. Using this point we can find the
correct solution.
It’s remain to fix the scale factor of the translation vec-
tor t. To this end, we consider a new coordinate frame

(x′′, y′′, z′′) with the origin in the center of C and the y-
axes aligned to the y-axes of W (fig. 3). We can express the
position of the second camera C2 (C2 = −RT t) to the new
coordinate frame as C

′′
2 = R1C2. At this point to deter-

mine the scale of C
′′
2 we constraint the y-coordinate value

to be equal to the difference between h2 (height of the sec-
ond camera wrt the ground plane) and h1. One C

′′
2 is fixed,

we can transfer back it to the first-camera coordinate frame,
C̃2 (C̃2 = RT

1 C
′′
2 ). Finally we have t = −RC̃2.

6 Experiments and Results
In order to estimate the accuracy of the proposed method,
we experiment with synthetic and real data.
Synthetic data: To examine the performance of the pro-
posed calibration algorithm we created a synthetic scene
(fig. 4). The first and the second camera were located re-
spectively 3 and 2 meters above a ground plane with a tilt
angle of π/6. Both cameras had a focal length of f = 480,
unit aspect ratio, zero skew and principal point at (320,240).
The image resolution was 640 × 480 pixels.
In the scene randomly generated vertical segments of height
1,7 meters were inserted. The “foot” segments were posi-
tioned on the ground plane.
First, the performance of the estimation of internal and
external parameters from data with noise was evaluated.
Gaussian noise with zero mean and different standard devi-
ations were added to heads and feet separately. The number
of segments used was 1000, and for each value of the stan-
dard deviation the experiments were repeated 2000 times.
Results in Table 1 show the root mean square errors between
the estimated values and the true values of all estimated pa-
rameters for different values of the standard deviation. Very
large standard deviation values were chosen in order to be
as close as possible to real world conditions.
The focal length estimation is compared between our es-

timation algorithm and with the algorithm with the hypoth-
esis of the principal point locate in the center of the im-
age. Figure 5 shows the mean and standard deviation ab-
solute error of focal length estimation for synthetic cam-
eras where the principal point was moved out of the image
center (the standard deviation of gaussian noise added to
heads and feet was 0.5). It can be observed that the absolute
mean error of our algorithm remains constant whereas the
other case grows more than linear. The fig 5 also shows that
small changes in the estimated of the principal point loca-
tion cause large errors in the estimated focal length.
Real data: The proposed algorithm has been tested on mul-
tiple real sequences with a different walking person each.
The image sequences had a resolution of 320 × 240 pix-
els and were captured at multiple locations and orientations.
Three of them are shown in fig. 6 and 7. To evaluate the per-
formance of our algorithm we tested its ability to recover

4



Camera 1 Camera 2 Relative position
Translation Rotation

f u v f u v x y z
True value 480 320 240 480 320 240 -4.854m -2.629m 2.554m -58.80° -72.42° 88.391°

Std. Gaus. Error. 
0,5 1.331 0.312 2.385 2.162 0.353 3.514 0.0296m 0.0131m 0.0114m 0.17° 0.30° 0.38°
1 2.314 0.601 4.085 4.027 0.688 6.504 0.0492m 0.0248m 0.0197m 0.29° 0.53° 0.72°
2 5.267 1.176 9.576 8.929 1.427 15.189 0.1261m 0.0512m 0.0453m 0.71° 1.17° 1.50°
3 8.601 2.101 15.976 14.807 1.954 26.851 0.2215m 0.0759m 0.0722m 1.25° 1.83° 2.17°
5 15.885 2.974 28.477 31.694 3.482 66.196 0.4212m 0.1522m 0.1194m 2.60° 3.15° 4.21°

Table 1: The top of the table shows the true values of the internal parameters of both cameras, f is the focal length, [u, v] are
the principal point coordinates, the values of translation vector t = [x, y, z]T and rotation parameters α, β, γ. The bottom
part shows the root mean square errors between the estimated values and the true values of all estimated parameters.
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Figure 5: The dash line shows the absolute mean error of
focal length estimation with our algorithm. The solid line
shows the absolute mean error of the estimation of focal
length supposing the principal point in the center of image.
Their vertical lines identify the standard deviation errors.
The gaussian error used for heads and feet has zero mean
and 0.5 standard deviation.

distances between objects or the height of an object.
In the first sequence (fig. 6 see the left example) the heads
and feet data were acquired and 70 measurements of dis-
tances were collected and five of which are shown in fig.
6 where their estimated values and the true values are re-
ported. The mean error of 0,04m over all 70 measurements
was estimated.
In the other sequence (fig. 6 see the right example) the heads
and feet data were captured and 80 measurements of dis-
tances were exploited for evaluating the performance (Six
measurements examples are shown in fig. 6). The mean er-
ror of all 80 measurements is 0,02m.
Fig. 7 shows the last example. The heads and feet data
were captured and the performed measurements were about
70 and the estimation of the mean error is 0,05m.
Results show that our method is robust with regard to vari-
ous viewing angles and camera positions. The experiments
cover a wide range of tilt angles and relative positions of

typical surveillance camera applications. Results on differ-
ent walking people (four in total in all experiments) show
that our method is also insensitive with regard to various
subjects and various object lengths.

7 Conclusions
This paper proposed a novel method for self-calibration
consisting of two different cameras. In particular the
presented work is able to obtain calibration parameters
completely automatically (i.e. focal length, principal point
and relative position and orientation for both cameras). The
method combines single and two view geometry of cameras
viewing a common scene plane with a walking person.

Synthetic experiments show satisfactory results with
regard to various levels of noise. The real experiments
report good behavior in recovering the distances and object
lengths.
An interesting direction for future research is to extend
our approach in the case of three or four cameras. The
special scene structure (a plane and vertical segments) can
be exploited using trifocal and quadrifocal tensors.
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