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ABSTRACT

In many application scenarios digital images play a basic role
and often it is important to assess if their content is realistic
or has been manipulated to mislead watcher’s opinion. Im-
age forensics tools provide answers to similar questions. This
paper, in particular, focuses on the problem of detecting if
a feigned image has been created by cloning an area of the
image onto another zone to make a duplication or to cancel
something awkward. The proposed method is based on SIFT
features and allows both to understand which are the image
points involved in the counterfeit attack and, furthermore, to
recover the parameters of the geometric transformation. Ex-
perimental results are provided to witness the powerfulness of
the proposed technique.

Index Terms— SIFT, image tampering, geometric trans-
formation, image forensic, authenticity

1. INTRODUCTION

Looking at an image often raises a question, is it realistic or
has it been retouched? [1]. Such a question is usually due
to the well-known easiness with which digital images can be
modified to alter their content and the meaning of what is rep-
resented in them. When the context in which pictures are used
is not a tabloid or an advertising poster, but, for instance, it is
a court of law where images are presented as basic evidences
for a trial to influence the judgement, answering reliably to
such questions about integrity becomes fundamental. Image
forensics deal with these issues by developing technological
instruments which generally allow to determine, only on the
basis of a photograph, if that asset has been tampered with [2]
or which has been the adopted acquisition device [3, 4]. Fur-
thermore, it would be interesting, once established that some-
thing has happened, to understand what: if an object or a per-
son has been covered, if a part of the image has been cloned,
if something has been copied from another image or, even
more, if a combination of these processes has been carried
out. In particular, when an attacker creates his feigned image
by cloning an area of the image onto another zone to make
a duplication or to cancel something that was awkward, he
is often obliged to apply a geometric transformation to satis-

factorily achieve his aim. Succeeding in individuating if this
kind of tampering has taken place and in estimating the pa-
rameters of the transformation occurred (i.e. horizontal and
vertical translation, scaling factors, rotation angle) could be
worthy in a forensic analysis. On the basis of such a consider-
ation, in this paper a new methodology which answers to this
requirement is presented. Such a technique is based on Scale
Invariant Features Transform (SIFT) [5] algorithm which is
used to robustly detect and describe clusters of points belong-
ing to cloned areas. Successively, these points are exploited
to reconstruct the parameters of the occurred geometric trans-
formation.

The paper is structured as it follows: in Section 2 a brief
description of SIFT technique is provided and in Section 3
the proposed method is discussed in detail; some experimen-
tal results, both to demonstrate forgery detection capability
and to prove performances with regard to transformation pa-
rameters estimation, are debated in Section 4 and conclusions
are drawn in Section 5.

2. SIFT FEATURES FOR IMAGE FORENSICS

Many techniques have been proposed to address the prob-
lem of copy-move forgery detection. Almost all methods di-
vide the image into overlapping blocks and then a feature ex-
traction process to represent the image blocks is performed.
The forgery decision is made only if there are more than a
certain number of blocks that are connected to each other
and the distance between each duplicated block pair is the
same. Bayram et al. [6] presented a comparative evaluation
among Discrete Cosine Transform (DCT), Principal Compo-
nent Analysis (PCA) and Fourier Mellin Transform (FMT)
features. In particular, the robustness of these methods against
rotation and scaling operation is reported. FMT and DCT
methods can detect rotations of up to 10° and 5° respectively
and they can not detect scaling over 10%, while the PCA
method can not detect scaling and rotation transformation at
all. Recently visual local features have become extremely
popular for the tasks of object detection and recognition, due
to their robustness with respect to partial occlusion, clutter
and geometrical transformations. Many different approach
have been presented but a common idea is to model a complex
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Fig. 1. Overview of our system. The lines link pairs of matched points and colors represent different clusters.

object or a scene by a collection of local salient points. These
methods typically start with a detection step, in which inter-
est points are localized, then representations of local patches
are extracted by a descriptor, generally defined so as to be
invariant with respect to orientation, scale and affine transfor-
mations. The review paper by Mikolajczyk and Schmid [7]
provides a comprehensive analysis of several local descrip-
tors, but perhaps the most commonly used solution is Scale
Invariant Features Transform (SIFT) [5] because of their high
performances and relatively low computational cost. Given an
image, SIFT features are detected at different scales by using
a scale space representation implemented as an image pyra-
mid. The pyramid levels are obtained by Gaussian smooth-
ing and sub-sampling of the image resolution while interest
points are selected as local extrema (min/max) in the scale-
space. These points (usually called keypoints) are extracted
by applying a computable approximation of the Laplacian of
Gaussian (LoG) following the same approach of the Hessian
detector. In particular, the SIFT algorithm approximates LoG
by iteratively computing the difference between two nearby
scales in the scale-space. This idea is referred to as the Dif-
ference of Gaussians (DoG) approach. Once these keypoints
are detected, SIFT descriptors are computed at their locations
in both image plane and scale-space. Each descriptor con-
sists in a histogram of 128 elements, obtained from a 16x16
pixels area around the corresponding keypoint. The contribu-
tion of each pixel is obtained by calculating image gradient
magnitude and direction in scale-space and the histogram is
computed as the local statistics of gradient directions (8 bins)
in 4x4 sub-patches of the 16x16 area.

3. THE PROPOSED METHOD

Our method relies on SIFT features since they are, as previ-
ously introduced, robust to scaling, rotation and also to affine
transformations. These properties are well-suited for the de-
tection of forgeries in images. In fact, the copied part has
the same appearance of the original one, thus keypoints ex-
tracted in that region will be quite similar to the originals.
Therefore matching between SIFT features can be used to dis-
cover which part was copied and which geometrical transfor-
mation was applied. Figure 1 shows a schematization of the
overall system. In particular, given an image I , we extract
the keypoints X = {x1, . . . ,xn} and their SIFT descriptors
D = {desc1, . . . , descn}. The best candidate match for each
keypoint xi is found by identifying its nearest neighbor from

the other n−1 keypoints, which is the keypoint with the min-
imum Euclidean distance between their descriptors. In order
to perform the matching decision (i.e. “are these two descrip-
tors the same or not?”), evaluating the distance between two
descriptors with respect to a global threshold does not per-
form well. This is due to the high-dimensionality of the fea-
ture space (128) in which some descriptors are much more
discriminative than others [5]. We obtain a more effective
measure by using the ratio between the distance of the clos-
est neighbor to that of the second-closest one, and comparing
it with a threshold. For sake of clarity, given a keypoint we
define a similarity vector S = {d1, d2, . . . , dn−1} that repre-
sents the sorted euclidean distances with respect to the other
descriptors. The keypoint is matched only if the following
constraint is satisfied: d1

d2
< T (fixed empirically to 0.6). Iter-

ating on each keypoint inX , we can obtain the set of matched
points.

Clustering. To detect the possible cloned areas we use ag-
glomerative hierarchical clustering on the spatial location of
the matched points. Hierarchical clustering creates a hierar-
chy of clusters which may be represented in a tree structure.
The algorithm starts by assigning each point to a cluster; then
it finds the closest (i.e. the most similar) pair of clusters and
merges them into a single cluster. We consider the distance
between two clusters to be equal to the shortest distance from
any member of one cluster to any member of the other clus-
ter. The final number of clusters is obtained by cutting the
tree at a particular height. For the cutting criteria we use the
inconsistency coefficient value. It characterizes each link in
a cluster tree by comparing its length with the average length
of other links at the same level of the hierarchy.

Geometric transformation estimation. Translation, rota-
tion and scaling transformation between an original area and
its copied area can be determined using the set of extracted
matched points. Let the matched point coordinates be, for the
two areas, xi = (x, y, 1)T and x′

i = (x′, y′, 1)T respectively,
their geometric relationships can be defined by an affine ho-
mography which can be represent by a 3 × 3 matrix as:
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This matrix can be computed by at least three matched points.
In particular, we determine H by using Maximum Likelihood



estimation of the homography [8]. This method seeks homog-
raphy H and pairs of perfectly matched points x̂i and x̂′

i that
minimize the total error function:

∑

i

[

d(xi, x̂i)
2 + d(x′

i, x̂
′

i)
2
]

subject to x̂
′

i = Hx̂i ∀i. (2)

However mismatched points (outliers) can severely disturb
the estimated homography. The goal then is to determine a set
of inliers from the presented correspondence so that the ho-
mography can be optimally estimated from these inliers using
the algorithm above. For this purpose we apply the RANdom
Sample Consensus algorithm (RANSAC) [9]. The geometric
transformation can be so computed from an affine homogra-
phy. In fact, H can be represented as:

H =

[

A t

0T 1

]

(3)

where
A =

[

a11 a12

a21 a22

]

and t =

[

t1
t2

]

. (4)

The vector t is the translation while the matrix A is the com-
position of rotation and non-isotropic scaling transformations.
In particular, A can always be decomposed in SVD (Singu-
lar Value Decomposition) form as A = USVT, where S =
diag(s1, s2). Moreover, the matrix A can be also rewritten
as: A = (UVT)(VSVT) = R(θ)(R(−Φ)SR(Φ)) since U and V

are orthogonal matrices. Thus, A is considered to be the con-
catenation of a rotation Φ, obtained by the rotation matrix
R(Φ) = VT; a scaling S, in which s1 and s2 respectively rep-
resents the (rotated) x and y directions; a rotation back (by
−Φ); and finally another rotation θ (R(θ) = UVT).

4. EXPERIMENTAL RESULTS

The proposed approach has been tested on several images
with different contents, coming from the Columbia photo-
graphic images dataset [10] and from a personal collection.
In our experiments, we tampered these images by coping and
pasting an image part (on the average 1.2% of the whole im-
age) over another area in the same image. The dataset is
composed by 100 tampered images obtained from 10 origi-
nal images. These feigned images are obtained by making 10
different attacks by translating, rotating, scaling or both, the
copied part of an image before pasting. Table 3 shows the
geometric transformations of these attacks (from a to j). In
particular for each attack is reported the rotation degree θ and
the scaling factor sx, sy applied to the x or y axis of the orig-
inal image part (e.g. in the attack h, the x axes is scaled by
40% and y by 20%). The value of the translation is not shown
because each tampering requires a different translation, de-
pending on the context of the image. Experimental results for
copy-move forgeries detection and the analysis of the perfor-
mances achieved in the geometric transformation estimation
are presented in the following.

Attack θ ° sx sy

a 0 1 1
b 10 1 1
c 20 1 1
d 30 1 1
e 40 1 1

Attack θ ° sx sy

f 0 1.2 1.2
g 0 1.3 1.3
h 0 1.4 1.2
i 10 1.2 1.2
j 20 1.4 1.2

Table 3. The 10 different combinations of geometric trans-
formations applied to the original patch.

(a) The tampered image Cars. (b) The detection result.

(c) The tampered image Goslings. (d) The detection result.

Fig. 2. On the left column the tampered images and on the
right column the outputs of the proposed detection algorithm.

4.1. Forgeries detection

Each tampered image in our dataset is recognized as such,
when at least three points, between the original and the cloned
area, are found. In particular our method outperforms the oth-
ers copy-move methods [6]; in fact, it is able to detect feigned
images with cloned areas rotated above 10° and scaling above
20%. In the following, we give a detailed account to the re-
sults obtained with rotation value from 10° to 40° and scaling
from 20% to 40%, but the proposed method is able to detect
also rotation of 90° and scaling of 50%. A comprensive study
on all the possible ranges of rotation and scaling will be in-
vestigated in the next future.

Two tampered images of the dataset are shown as rep-
resentative examples on the left column of Figure 2, while
on the right side the outputs of the detection algorithm for
both images are pictured. So it is pointed out by Figure 2(b)
“Cars” that we are dealing with a simple cloning, and from
Figure 2(c) that we are dealing with a multiple cloning; in
fact the gosling in the centre of the image was copied and
then pasted, without manipulation, on the bottom left of the
image and then downsized (20%) before it is pasted on the
top left of the image.



A tx t̂x |e| ty t̂y |e| θ θ̂ |e| sx ŝx |e| sy ŝy |e|

a 304 304.02 0.02 80.5 81.01 0.51 0 0.040 0.040 1 1.004 0.004 1 0.998 0.002
b 304 305.20 1.20 80.5 82.42 1.92 10 9.963 0.037 1 1.001 0.001 1 0.999 0.001
c 304 305.55 1.55 80.5 82.64 2.14 20 20.009 0.009 1 1.006 0.006 1 0.998 0.002
d 304 305.04 1.04 80.5 82.49 1.99 30 30.092 0.092 1 1.002 0.002 1 0.998 0.002
e 304 306.08 2,08 80.5 78.43 2.07 40 39.932 0.067 1 1.007 0.007 1 1.004 0.004
f 304 304.88 0.88 80.5 80.41 0.09 0 0.080 0.080 1.2 1.202 0.002 1.2 1.198 0.002
g 304 305.07 1.07 80.5 79.87 0.63 0 0.108 0.108 1.3 1.304 0.004 1.3 1.303 0.003
h 304 305.78 1.78 80.5 80.18 0.32 0 0.037 0.037 1.4 1.403 0.003 1.2 1.206 0.006
i 304 305.23 1.23 80.5 81.76 1.26 10 9.910 0.090 1.2 1.203 0.003 1.2 1.201 0.001
j 304 305.02 1.02 80.5 80.82 0.32 20 20.067 0.067 1.4 1.404 0.004 1.2 1.198 0.002

Table 4. Transformation parameters estimation on image Cars. The values tx and ty are expressed in pixels while θ in degrees.

4.2. Transformation parameters estimation

Table 4 reports, for the image Cars and for each transforma-
tion parameter, the original value applied to the patch, the
estimated one and the absolute error (|e|). In particular we
observe that the estimated parameters are very close to the
original values both for the rotation θ and the scaling values
sx and sy . Also the translation vector of the duplicated parts
is considered and the estimation errors between the original
values tx, ty and the estimated t̂x, t̂y are only few pixels. In
Table 5, we report the Mean Absolute Error (MAE) values for
all the attacks (summarized in Table 3) averaged on all the 10
images. The results show that our method returns in the worst
case a maximum value of MAE, in case of translation attack,
that is equal to 8.736 (in x) and 6.541 (in y). Moreover, ro-
tation and scaling attacks returns very low MAE values (i.e.
0.513 for θ, 0.084 and 0.094 for scale).

A MAE(tx) MAE(ty ) MAE(θ) MAE(sx) MAE(sy )

a 1.069 4.481 0.120 0.002 0.002
b 8.097 6.149 0.513 0.013 0.014
c 1.707 6.328 0.220 0.011 0.007
d 5.397 5.534 0.200 0.010 0.010
e 8.736 6.541 0.081 0.012 0.005
f 4.014 5.557 0.255 0.084 0.094
g 1.584 3.892 0.092 0.045 0.039
h 1.471 3.902 0.151 0.014 0.008
i 2.313 5.160 0.122 0.005 0.006
j 3.624 5.601 0.269 0.081 0.018

Table 5. Transformation parameters estimation errors.

5. CONCLUSIONS

A new technique for image forensics based on SIFT features
has been introduced. Its powerfulness to detect copy-move at-
tack and to trace back the geometric transformation occurred
has been witnessed by specific experimental results. Future
works will be dedicated to investigate and improve the behav-

ior of the technique in relation with the size and the texture of
the cloned image patch.
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