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ABSTRACT

In this work is presented a novel approach for the classifica-
tion of audio concepts in broadcast soccer videos using deep
belief network (DBN), a probabilistic neural network with
several hidden layers. Comparison with support vector ma-
chine (SVM) classifiers has been carried on, showing that our
preliminary results are promisingly comparable to the state-
of-the-art.

Index Terms— Deep belief networks, audio event classi-
fication, sports videos, SVM

1. INTRODUCTION AND RELATED WORKS

Research on sport videos has focused on detection of se-
mantic events to ease access, browsing and summarization.
Most of the works rely on visual analysis only but, being
an important part of the sports video, the classification of
audio events may create a more thorough description of video
content or it may help the refinement of the detection of high-
lights [1]. Hanjalic [2] has proposed a method for highlight
detection in soccer videos through the analysis of an “excite-
ment time curve”, that attempts to model the interest of users
using a combination of audio-visual features. Wickramaratna
et al. [3] have proposed a method for the detection of goal
events in soccer videos using audio/visual features and neural
network ensembles as classifiers; the component networks
are trained with different training subsets and the predictions
are combined together with a weighting scheme. Divakaran
et al. [4] have proposed a system to detect generic sport
highlights using only audio features and performing real-time
classification into audio classes such as excited speech, ap-
plause, cheering, etc. The audio features used are the MDCT
coefficients of the AC-3 encoding used in MPEG-2 streams,
while classification is performed using low-complexity Gaus-
sian Mixture Models (GMMs). Kim et al. [5] fuse visual
analysis that classifies pitching and close-up shots with au-
dio events related to cheering, to detect scoring highlights
in baseball videos. The audio features used are based on
MDCT coefficients of AC-3, and classification is done using
SVMs. Xu et al. [6] have proposed a system that recognizes
several generic sport audio concepts (e.g. whistling, excited
speech) and domain specific (e.g. ball hitting backboard in

basket); feature vectors, composed by a combination of dif-
ferent audio descriptors (Mel-frequency and linear prediction
cepstral coefficients, etc.), are processed by SVMs for feature
selection and classification.

In this work we present an approach for the classification
of audio concepts in sport videos using deep belief networks
(DBNs). These networks are probabilistic generative models
composed of several layers of hidden units. They are receiv-
ing a large attention from the scientific community, since the
recent introduction of a fast greedy layer-wise unsupervised
learning algorithm by Hinton et al. [7]. This training strategy
has been subsequently analyzed by Bengio et al. [8] who con-
cluded that it is an important ingredient in effective optimiza-
tion and training of deep networks. Deep networks can be
trained to reduce the dimensionality of data [9], and have been
successfully applied to document retrieval [10]. Very recently
DBNs have been used to obtain low-dimensionality image
representations, to perform image recognition and retrieval in
large scale databases, using local features (Hörster and Lien-
hart [11]) or global features (Torralba et al. [12]). Larochelle
et al. [13] have tested shallow and deep architecture models
on several vision tasks, comparing DBNs, SVMs and single
hidden layer neural networks showing that deep architecture
models have globally the best performance. Recent theoreti-
cal studies indicate that deep architectures may achieve better
generalization performance on challenging recognition tasks
[14]. To the best of our knowledge this is the first work in
which DBNs have been applied for audio concept recogni-
tion. The approach has been compared to Support Vector Ma-
chine (SVM) classifiers on a real-world dataset; experimental
results show that this approach is promising.

This paper is organized as follows: the audio features used
are described in Sect. 2; a description of the DBNs is provided
in Sect. 3. Experimental results and comparison of DBNs
and SVMs are reported in Sect. 4 and, finally, conclusions are
drawn in Sect. 5.

2. AUDIO FEATURES

A wide variety of different physical and perceptual audio fea-
tures have been proposed in the scientific literature [15]. In
our approach we use the Mel-scale Frequency Cepstral Co-
efficients (MFCCs) and the logarithm of the energy, that are



perceptive scale

downsampling
(16kHz, 32768 samples)

windowing
(hamming)

frame
64ms, overlap 50%

Fast Fourier
Transform

DCT(Log|•|)

MFCCs
819-d vector

audio signal
downmixed to mono

Mel filter-bank
(13 sub-bands)

Log(∑•²)

Energy Log
scalar

2s clip

final 820-d
feature vector 

spectrum

cepstrum

mercoledì 14 gennaio 2009

Fig. 1. Extraction process of the MFCCs and of the logarithm
of energy.

widely used for audio classification and speech recognition
tasks. The audio signal is downmixed to mono, downsampled
to 16 KHz and divided in clips of two seconds length, the fea-
tures are then extracted as described in the following. The
MFCCs are computed segmenting the audio stream in win-
dowed frames of 64ms, using Hamming windows to reduce
edge effects. These segments are 50% overlapped to encode
statistical information between adjacent windows. We com-
pute the fast Fourier transform then triangular filter banks,
that are linearly spaced in the Mel (perceptually-based) scale,
are imposed on the spectrum. Logarithm is next applied to
the filter bank outputs, followed by discrete cosine transform.
The MFC Coefficient ck is defined as:

ck =
N∑

i=1

log(Ei) · cos
(
kπ

N

(
k − 1

2

))
(1)

where Ei is the output of the ith triangular filter bank. We
consider the MFCCs of the first 13 frequency sub-bands. The
logarithm of the energy is computed on the whole two sec-
onds segment to encode the global characteristic of the sig-
nal. Therefore, for each segment the dimension of the final
feature vector is equal to 820 (819 MFCCs + 1 logarithm of
energy). The complete audio-features extraction process is
summarized in Fig. 1.

3. THE CLASSIFICATION METHOD

A shallow model is a model with very few layers of compo-
sition, e.g. linear models, one-hidden layer neural networks
and kernel SVMs. On the other hand, deep architecture mod-
els are such that their output is the result of the composition

of some number of computational units, commensurate with
the amount of data one can possibly collect. These units are
generally organized in layers so that the many levels of com-
putation can be composed.

We investigate the use of deep belief networks [7, 8] to
classify audio events represented by the feature vectors intro-
duced in Sect. 2. The first layer of the network is thus formed
by 820 units (one for each audio feature), whereas the output
layer provides a unit for each class that has to be classified.
Each couple of adjacent layers can be viewed as a Restricted
Boltzmann Machine (RBM).

3.1. Restricted Boltzmann Machines

An RBM consists of a layer of binary stochastic visible units
v, connected to a layer of stochastic hidden units h by sym-
metrically weighted connections. The joint configuration
(v,h) of visible and hidden units has an energy given by:

E(v,h) = −
∑

i∈visible

bivi−
∑

j∈hidden

bjhj−
∑
i,j

vihiwij (2)

where vi and hj are the binary states of visible and hidden
units i and j, wij are the weights, bi and bj are the bias terms.
Using this energy function, the network assigns a probability
to every possible feature vector at the visible units:

p(v) =
∑
h

exp−E(v,h)∑
u,g exp−E(u,g)

. (3)

Given a training vector v, the binary states h of the hidden
units follow the conditional distribution:

p(hj = 1|v) = σ(bj +
∑

i

wijvi), (4)

where σ(x) = 1/(1+exp(−x)) is the logistic function. Once
binary states of the hidden units have been chosen, a recon-
struction is produced by setting each vi to 1 by following the
conditional distribution:

p(vi = 1|h) = σ(bi +
∑

j

wijhj). (5)

The states of the hidden units are then updated once more, so
that they represent features of the reconstruction. The new
weights are given by:

∆wij
= ε(〈vihj〉data − 〈vihj〉recon.), (6)

where ε is the learning rate, 〈vihj〉data is the fraction of times
that the visible unit i and the hidden units j are on together
when the hidden units are being driven by data. Finally,
〈vihj〉recon. is the corresponding fraction for reconstruction.
The same learning rule is applied to update biases bi and bj
(see [9] for details).



3.2. Deep Network Training

The DBN is trained in two stages: i) firstly, an unsupervised
pre-training phase which sets the weights of the network to
the approximately right neighborhood; ii) then, a fine-tunig
phase where the weights of the network are moved to the local
optimum by back-propagation on labeled data.

The pre-training is performed from the input layer up to
the output layer, following a greedy approach. In fact, the
training process described in the previous section is repeated
several times, layer by layer, obtaining a hierarchical model
in which each layer captures strong high-horder correlations
between its input units. After having greedly pre-trained all
network layers, the parameters of the deep model are then
refined. This is done using the pre-trained biases and weights
to initialize the backpropagation algorithm; backpropagation
is further used to obtain a fine-tuning of the parameters for
optimal reconstruction of the input data. In particular, the
fine-tuning stage minimizes the cross-entropy error:

[−
∑

i

oi log ôi], (7)

where ôi is the value of the ith unit of the DBN output layer
(each output node is associated to a specific label) and oi

is the ground-truth value of the corresponding labeled input
data, following the one-hot encoding (i.e. class 1 is coded as
“10000”, class 2 as “01000”, etc.). Input values lie between
0 and 1, and they are obtained by normalization of the audio
features resulting from the MFCCs extraction and logarithm
of energy computation.

4. EXPERIMENTAL RESULTS

All the experiments have been performed on a real world
dataset, that is available on request, consisting in more than
two hours of soccer videos in Italian language. It contains
matches of different teams (e.g. city teams such as Barcelona
and national teams such as Italy), and different broadcasters
(Eurosport, Rai, Tele+) with different speakers of different
gender. In fact speakers are usually males, but there are few
female commentators in the studio setting that is shown dur-
ing the break of the match.

In particular the audio signal is coded in AC-3 format,
with two channels and 44.1 KHz sampling rate. The audio
stream has been converted to mono and downsampled to 16
KHz, then divided in windows of 2 seconds for a total of
4065 segments, to extract the audio features. All of these
segments have been manually labeled in five different audio
events: Silence, Speech Only, Speech Over Crowd, Crowd
Only, Excited; the Excited class contains excited speech, ex-
cited crowd noise or a combination of them. Fig. 2 shows
sample keyframes associated with the audio events. The oc-
currences of these events in a soccer videos is quite different.
In fact, Speech Over Crowd and Excited events are the most
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Fig. 3. Frequency samples for each class in the dataset.
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Fig. 4. Confusion matrix of SVM classifier.

frequent while, for example, Speech Only events usually oc-
cur only during the break of the match. For this reason our
dataset is unbalanced. Fig. 3 shows the frequency distribution
for each class.

Training and test dataset have been taken according to a
3-fold cross-validation. We compare the proposed DBN clas-
sification method to SVM, that is widely used in the litera-
ture as classification method. The SVM kernel function used
is Chi-square, while the trained DBN consists of three hid-
den layers of logistic units resulting in a 820-800-800-4000-5
structure. In particular, the pre-training process for each layer
was of 50 epochs and the fine-training was computed apply-
ing early-stopping criterion within 200 epochs.

Fig. 4 and Fig. 5 report the confusion matrices for the
SVM and DBN classifiers respectively. The overall accuracy
for SVM is 74.13% while the DBN has a slightly lower accu-
racy of 71.67%. These global accuracies are obtained weight-
ing the accuracy of the classes with their cardinality (because
of the unbalancing of the dataset).

Silence is always correctly classified, followed by the
Speech Only. This latter class is particularly interesting since
it is related to the sequences that show the commentators in
the studio, and thus may be used to segment and classify
video shots. Moreover the audio sequences that have been
classified as Speech Only may be chosen to perform speech
recognition, to add high-level semantic annotation to the
video. The Speech Over Crowd is related to ongoing actions
while the Excited class is related to highlights such as shots



Fig. 2. Sample keyframes associated to the audio events classified by the system.
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Fig. 5. Confusion matrix of DBN classifier.

on goal, placed kicks near the goal post, penalty kicks, etc.
The Crowd Only class is related to shots showing actions but
without the speech of commentators.

The lower accuracy of DBN is mainly due to the two au-
dio classes that are less represented in the data set, thus we ex-
pect that increasing the training set of these two classes may
solve the problem. Moreover, DBNs have been introduced
very recently and there is an interesting effort in the research
community to define RBM layers that deal with continuous-
valued input vectors [8]. In fact, the values fed to the RBM
(see Sect. 3.1) are obtained through quantization of audio fea-
tures that are continuous values. Thus, we expect that using
the original values, as in the visual domain [13, 11], we can
improve the performances.

5. CONCLUSIONS

In this paper we have presented a novel method for audio
event classification based on the use of a deep belief neu-
ral network. The method has been tested on broadcast soc-
cer videos to recognize audio events that are connected to
video highlights and types of scenes. The preliminary re-
sults show comparable classification results with state-of-the-
art Chi-square based SVM classifier. Future works will deal
with the improvement of classification performances, through
the definition of RBM layers that deal with continuous-valued
input vectors.
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