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Abstract. Automatic semantic annotation of video events has received
a large attention from the scientific community in the latest years, since
event recognition is an important task in many applications. Events can
be defined by spatio-temporal relations and properties of objects and
entities, that change over time; some events can be described by a set of
patterns.
In this paper we present a framework for semantic video event annota-
tion that exploits an ontology model, referred to as Pictorially Enriched
Ontology, and ontology reasoning based on rules. The proposed ontol-
ogy model includes: high-level concepts, concept properties and concept
relations, used to define the semantic context of the examined domain;
concept instances, with their visual descriptors, enrich the video semantic
annotation. The ontology is defined using the Web Ontology Language
(OWL) standard. Events are recognized using patterns defined using
rules, that take into account high-level concepts and concept instances.
In our approach we propose an adaptation of the First Order Inductive
Learner (FOIL) technique to the Semantic Web Rule Language (SWRL)
standard to learn rules. We validate our approach on the TRECVID 2005
broadcast news collection, to detect events related to airplanes, such as
taxiing, flying, landing and taking off. The promising experimental per-
formance demonstrates the effectiveness of the proposed framework.

1 Introduction and previous work

Video archives have grown steadily in the recent years. There is therefore the
necessity to develop effective and efficient methods for automatic annotation and
retrieval of information. Indexing of these archives, based on low-level visual fea-
tures like color and texture, often does not meet the user’s information needs
due to the semantic gap between the information that can be extracted from
the visual data and the interpretation of the same visual data by a user in a
given context. Recently ontologies have been regarded as an appropriate tool to
overcome this semantic gap. An ontology consists of concepts, concept propri-
eties, and their relationships and provides a common vocabulary that overcome
semantic heterogeneity of information. Ontology Web Language (OWL) and Se-
mantic Web Rule Language (SWRL) have been approved by W3C as language
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standards for representing ontologies and performing reasoning using rules, re-
spectively.
Recently several EC projects have addressed the problem of using ontologies for
semantic annotation and retrieval by content from audio-visual digital libraries,
among them AceMedia [1], Aim@Shape [2], Boemie [3] and VidiVideo [4].
Many researchers have built integrated system where the ontology provides the
conceptual view of the domain at the schema level, and appropriate classifiers
play the role of entities detectors. Once the observations are classified, the on-
tology is exploited to have an organized semantic annotation, establishing links
between concepts and disambiguating the results of classification [5, 6].

Other researches have directly included in the ontology an explicit repre-
sentation of the visual knowledge to perform reasoning not only at the schema
level but also at the data level. Staab et al. [7] defined three separate ontolo-
gies that respectively modeled the application domain, the visual data and the
abstract concepts, to perform the interpretation of video scenes. Automatically
segmented image regions were modeled through low-level visual descriptors and
associated to semantic concepts using manually labeled regions as training set.
Kompatsiaris et al. [8] included in the ontology instances of visual objects that
were used as references to perform the classification of the entities observed in
video clips. They used as descriptors low-level perceptual features like color ho-
mogeneity, components distribution, and spatial relations. A similar solution was
presented by Bertini et al. in [9], using generic and domain specific descriptors
and introducing mechanisms for updating the prototypes of the visual concepts
of the ontology, as new instances of visual concepts are added to the ontology;
the prototypes are used to classify the events and objects observed in video se-
quences.
For event recognition several authors have exploited the ontology schema us-
ing temporal reasoning over objects and events. Snoek et al. [10] performed
annotation of sport highlights using rules that exploited face detection results,
superimposed captions, teletext and excited speech recognition, and Allen’s logic
to model temporal relations between the concepts in the ontology. Francois et
al. [11] defined a special formal language to define ontologies of events and used
Allen’s logic to model the relations between the temporal intervals of elementary
events, so as to be able to assess complex events in video surveillance. Haghi et
al. [12] proposed to use temporal RDF to model temporal relationships in the
ontology and provided examples of simple queries with temporal relationships
between events. Bai et al. [13] applied temporal reasoning with temporal descrip-
tion logic to perform event annotation in soccer video, using a soccer ontology.
All of these methods defined rules, used to describe events, that were created by
human experts; thus, these approaches are not practical for the definition of a
large set of actions.

To overcome this problem some researchers have studied techniques to learn
automatically a set of rules. Dorado et al. [14] performed video annotation based
on learned rules that infer high-level concepts from low-level features using deci-
sion tree technique. Shyu et al. [15] proposed a method to annotate rare events
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and concepts based on set of rules that use low-level and middle-level features.
Decision tree algorithm is applied to the rule learning process. Moreover they
addressed the imbalance problem of positive and negative examples in the case
of rare event/concept using data mining techniques. Liu et al. [16] proposed a
method to enhance accuracy of semantic concepts detection, using association
mining techniques to imply the presence of a concept from the co-occurrence of
other high-level concepts. None of these three works is based on ontologies.
These methods that learn a set of rules by exploiting decision tree algorithms
and low-level features, or simple junctions of high-level concepts, are not enough
expressive to describe complex events. For example consider the event A person
enters in secured area. This event can not be described using only the low-level
descriptors of the person and of the area, or using the co-occurrence of the high-
level concepts person and secured area since the person may stay outside of it,
or may have always been inside it; instead it is required to take into account the
temporal evolution of the characteristics and features of the objects and entities.
This event can be fully described and modelled using first-order logic. A sentence
that describes the events is: IF a person is outside of the secured area in the
time interval t1 AND the same person is in the secured area in the time inter-
val t2 AND t1 is before t2 THEN that person has entered the secured area; this
sentence can be translated in the following fragment of first-order logic language:

IF person(p) ∧ personOutsideOfSecuredArea(p, t1) ∧
personIsInSecuredArea(p, t2) ∧ before(t1, t2)
THEN personEntersSecuredArea(p)

where p is a variable that can be bound to any person and t1 and t2 are variables
that are used to represent time intervals.

In this paper we propose a framework for video event annotation that exploits
the Pictorially Enriched Ontology model, that includes concepts and their visual
descriptors [9], and a method to learn sets of first-order logic rules that describe
events defined in the ontology. Events can be described by spatio-temporal rela-
tions and properties of objects and entities, that change over time. The learned
rules, defined using the SWRL, are applicable directly to an ontology defined
using the OWL. The proposed learning method is an adaptation of the First
Order Inductive Learner technique (FOIL [17]) to the Semantic Web technolo-
gies; for convenience this method will be referenced in the following as FOILS.
This approach permits to create an ontology structure that allows to perform
automatic semantic annotation of video sequences matching visual descriptors
and recognizing events described using automatically learned rules. Moreover
the learning approach used is more expressive than the previous methods be-
cause it defines rules through the first-order logic theory. To demonstrate the
applicability to the automatic event annotation we show several events that can
be recognized by automatically learned rules. In particular our tests are per-
formed on the definition of some events related to airplane entities, defined in
the LSCOM ontology.
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2 Automatic video annotation framework

Our proposed framework, shown in Fig. 1, consists of three major components.
In the shot segmentation and feature extraction component, the video is divided
in syntactic units, low-levels features are extracted and objects and entities are
identified. The Pictorially Enriched Ontology component includes a formal def-
inition of a specific video domain and video structure. Rule-based reasoning is
performed on high-level concepts and concepts instances for the automatic an-
notation of events. Rules are directly learned from the ontology using the FOILS
algorithm.

Fig. 1. Framework of the system

2.1 Video parsing and feature extraction

Video segmentation involves temporal partitioning of the video into units which
serve as the basis for descriptor extraction and semantic annotation. In this
work, shots are adopted as the basic syntactic unit, while video clips (video
sequences possibly composed by more than one shot) are used as annotation
units. For each shot visual descriptors such as color histograms, edge maps,
etc. are extracted to perform a rough segmentation of each frame. Appropriate
classifiers are applied to identify objects or entities. The feature extractors are
used to provide the visual descriptors associated to the visual concepts of the
ontology. These descriptors, that may be generic or domain specific, are then
used to characterize concepts instances; this characterization allows to select the
most representative concepts as visual prototypes of a concept, and allow to
perform reasoning based on the visual appearance of a concept.

2.2 Pictorially Enriched Ontology

The Pictorially Enriched Ontology defines formally the domain of interest. In
Fig. 2 is shown a simplified view of the main concepts used to represent the
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events related to airplanes, as studied in the use case. Video structure and visual
descriptors associated to the visual concepts are stored in the ontology according
to the features extraction and classifier detection results. The concept instances
that are associated to visual descriptors can be used as matching references for
the entities that have to be annotated. In our experiments the airplane concept
is associated with color histograms, that are used by the tracker to identify the
instances of the detected airplanes in a video sequence.

2.3 First-order rule learning

Terminology: To describe correctly the algorithm for learning sets of first-order
rules, let us introduce some basic terminology from formal logic. All expres-
sions are composed of constants (e.g. Airplane1, Boeing-747 ), variables (e.g. x,
y), predicate symbols (e.g. HasTrajectory, GreaterThan) and function symbols
(e.g. duration). The difference between predicates and functions is that predi-
cates have value of True or False, whereas functions may have any constant as
their value. In the following we will use lowercase for functions and capitalized
symbols for predicates. A term is any constant, any variable, or any function ap-
plied to any term. A literal is any predicate or its negation applied to any term.
If a literal contains a negation symbol (¬), we call it negative literal, otherwise
a positive literal. A clause is any disjunction of literals, where all variables are
assumed to be universally quantified. A Horn clause is a clause containing at
most one positive literal, as shown in the following:

H ∨ ¬L1 ∨ ¬L2 . . . ∨ ¬Ln

where H is the positive literal, and ¬L1 ∨¬L2 . . .∨¬Ln are negative literals. It
is equivalent to:

(L1 ∧ L2 . . . ∧ Ln)→ H

which is equivalent to the following:

IF (L1 ∧ L2 . . . ∧ Ln) THEN H

The Horn clause precondition L1 ∧ L2 . . . ∧ Ln is called clause body ; the literal
H that forms the post-condition is called the clause head.

First-Order Inductive Learner for SWRL technique: FOILS, first-order
inductive learner for SWRL technique is an adaptation of the FOIL algorithm
to the SWRL standard. The hypotheses learned by FOILS, similarly to FOIL,
are sets of first-order rules, where each rule is similar to a Horn clause with the
limitation that literals are not permitted to contain function symbols, in order
to reduce the complexity of the hypothesis space search. At the beginning the
algorithm starts with the head that we want to find in the rule and an empty
or initial body. The algorithm iterates searching the new literals that have to
be added to the body of the rule. The search is a general-to-specific search
through the space of hypotheses, beginning with the most general preconditions
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possible (the empty or initial precondition), and adding literals one at a time
to specialize the rule until it avoids all negative examples, or when no more
negative examples are excluded for a certain number of loops. Two issues have
to be addressed: the generation of hypothesis candidates and the choice of the
most promising candidate.

Generating hypothesis candidates: Suppose that the current rule being
considered is:

(L1 ∧ L2 . . . ∧ Ln)→ P (x1, x2, . . . , xk)

where (L1 ∧ L2 . . . ∧ Ln) are literals forming the current rule preconditions and
where P (x1, x2, . . . , xk) is the literal that form the rule head. FOILS generates
candidate specializations of this rule by considering new literals Ln+1 that fit
one of the following forms:

– Q(v1, . . . , vr) where Q is any predicate name occurring in Predicates and
where the vi are either a new variable or a variable already present in the
rule. At least one of the vi in the created literal must already exist as a
variable in the rule.

– Equal(xj , xk) where xj and xk are variables already present in the rule.

We observe that in FOIL there is another rule for generation of new candidates: it
is the negation of either the above form of literals. This rule can not be exploited
in our algorithm because it is not permitted by SWRL.

Most promising literal: To select the most promising literal from the can-
didates generated at each step, FOILS, similarly to FOIL, considers the per-
formance of the rule over the training data. The evaluation function used to
estimate the utility of adding a new literal is based on the number of positive
and negative bindings covered before and after adding the new literal. More pre-
cisely consider some rule R, and a candidate literal L that might be added to
the body of R. Let R′ be the rule created by adding the literal L to rule R. The
value of adding L to R is defined as:

Foil Gain(L, R) ≡ t

(
log2

p1

p1 + n1
− log2

p0

p0 + n0

)
where p0 is the number of positive bindings of rule R, n0 is the number of
negative bindings of R, p1 is the number of positive bindings of rule R′ and n1

is the number of negative bindings of R′. Finally, t is the number of positive
binding of rule R that are still covered after adding literal L to R. When a new
variable is introduced into R by adding L, then any original binding is considered
to be covered as long as some binding extending it is present in the bindings of
R′.
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3 Use Case

We have applied the automatic video annotation framework to the detection
of events related to airplanes, selecting them from the revised list of LSCOM
events/activities [18]. Four events related to an airplane concept are analyzed:
airplane flying, airplane takeoff, airplane landing, airplane taxiing. In Fig. 2 a
simplified schematization of the ontology defined for these events is shown; for
the sake of simplicity the visual descriptors associated to the airplane concept
are not reported.

Fig. 2. Main concepts, relations and properties of the airplane events ontology.

These events can be detected using airplane, sky and ground detector and
the temporal relationship between these concepts. For example, the evolution of
an airplane takeoff event video is composed by a view of the airplane moving
on the ground and after by a view of airplane on sky. An airplane detector has
been created using the Viola&Jones object detector. The positive and negative
examples used to train the detector have been selected from standard image
datasets such as Caltech, VOC2005 and VOC2006. The negative examples used
are images of man-made objects (e.g. other vehicles like cars, buses and motorcy-
cles), outdoor scenes, animals and persons, various objects. The sky and ground
detectors implemented are not used to classify all the parts and segments of each
frame, but only locally, next to the airplane position, because it is enough to
know if the airplane is on ground or in sky. The sky/ground detector evaluates
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statistical parameters of the luminance of the blobs around the detected air-
plane. Finally using a tracker, based on an improved version of the particle filter
[19], we can determine the temporal evolution of the trajectory of airplane. The
detected airplane, its bounding box trajectory and sky and ground detection are
inserted in the ontology. Using learned SWRL rules the airplane takeoff, airplane
landing, airplane flying and airplane taxiing events are identified. In Fig. 3 two
examples of landing and take-off events are shown. These rules are learned from

Fig. 3. Examples of airplane landing and take-off events. For each event the results of
airplane detection and tracking are shown, along with a temporal model of the event.

a set of positive and negative examples stored in the ontology using the FOILS
technique, described in the previous section. To illustrate how the FOILS al-
gorithm works we consider, for example, the target literal AirplaneIsTakingOff.
The process starts with an initial rule written in SWRL. that models the take-off
of airplane a within the video clip c:

Airplane(?a) ∧ Clip(?c) → AirplaneIsTakingOff(?a, ?c)

The initial candidates are all the classes and properties defined in the ontology
domain and temporal properties used to encode Allen’s logic. At each step the
most promising literal is added, considering the performance of the rules over
the training data.
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N. detector N. steps Neg. examples Pos. examples Window size Precision Recall

1 17 3000 800 50×30 0.20 0.74

2 18 1500 800 50×30 0.19 0.83

3 20 1500 800 50×30 0.32 0.65

4 20 1500 800 25×10 0.75 0.55

5 22 1500 1040 50×30 0.41 0.66
Table 1. Precision and recall of airplane detector.

4 Experimental results

In the first part of the experiment we evaluate the performance of the airplane
detector. We have trained five different detectors, using five configurations, with
different numbers of positive and negative examples, image window sizes, and
learning steps. Results are reported in Tab. 1. To train the fifth detector the
number of positive examples of airplanes has been increased, adding more images
of frontal and rear views of airplanes. The first three detectors did not provide an
acceptable performance in terms of precision, as shown in the table. The decrease
of the precision value between the fourth and fifth detector is mainly due to the
fact that the detector may provide multiple detections for the same airplane,
whose bounding boxes are overlapping, and these multiple detections have been
counted as falses; without considering this overlapping effect the precision is
comparable with that of the fourth detector. Considering this fact, the fifth
detector has been selected and used in the following experiment.

To test the effectiveness of the learned rules we have used them to recognize
events in a large dataset, that comprises 100 videos containing airplane events
taken from the web1 and 65 Trecvid 2005 videos.

The set of videos selected from the web video sharing sites (called on the fol-
lowing as Web Dataset) is available online, along with the airplane detector2. The
Trecvid videos were selected from those reported in the LSCOM development set
as containing the concepts airplane takeoff, airplane landing and airplane flying,
after a manual inspection that eliminated some errors of the ground truth (e.g.
videos that contained rockets or helicopters instead of airplanes). Since the con-
cept airplane taxiing is not defined in LSCOM we inspected the videos annotated
as containing airplane to select some videos that contained this event.

We have used an implementation of the FOILS algorithm, described in Sect. 2.3,
to learn the SWRL rules that model the airplane events. The videos of the Web
Dataset have been used to learn the rules. For each event that we want to learn
we randomly select one third of the videos containing that event as positive ex-
amples, and one third of the videos of the other events as negative examples. In
Tab. 2 the learned rules are shown. For each rule we present the initial rule and

1 YouTube (http://www.youtube.com), Alice Video (http://dailymotion.alice.it),
PlanesTV (http://www.planestv.com/planestv.html), Yahoo! Video
(http://it.video.yahoo.com)

2 http://www.micc.unifi.it/dome
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Rule: Airplane TakingOff

Initial rule:
Airplane(?p) ∧ Clip(?c)→ IsTakingOff(?p, ?c)
Result rule:
Airplane(?p) ∧ Clip(?c) ∧ IsOnSky(?p, ?g1) ∧ IsOnGround(?p, ?g2) ∧
Temporal : after(?g1, ?g2) ∧HasTemporalPeriod(?c, ?g3) ∧ Temporal : contains(?g3, ?g1) ∧
Temporal : contains(?g3, ?g2) ∧ MovingObject(?p) → IsTakingOff(?p, ?c)

Rule: Airplane Landing

Initial rule:
Airplane(?p) ∧ Clip(?c)→ IsLanding(?p, ?c)
Result rule:
Airplane(?p) ∧ Clip(?c) ∧ IsOnSky(?p, ?g1) ∧ IsOnGround(?p, ?g2) ∧
Temporal : notafter(?g1, ?g2) ∧HasTemporalPeriod(?c, ?g3) ∧ Temporal : contains(?g3, ?g1) ∧
Temporal : contains(?g3, ?g2) ∧ MovingObject(?p) → IsLanding(?p, ?c)

Rule: Airplane Flying

Initial rule:
Airplane(?p) ∧ Clip(?c)→ AirplaneF lying(?p, ?c)
Result rule:
Airplane(?p) ∧ Clip(?c) ∧ IsOnSky(?p, ?g1) ∧
HasTemporalPeriod(?c, ?g2) ∧ Temporal : contains(?g2, ?g1) → IsF lying(?p, ?c)

Rule: Airplane Taxiing

Initial rule:
Airplane(?p) ∧ Clip(?c)→ IsTaxiing(?p, ?c)
Result rule:
Airplane(?p) ∧ Clip(?c) ∧ IsOnGround(?p, ?g1) ∧
HasTemporalPeriod(?c, ?g2) ∧ Temporal : contains(?g2, ?g1) → IsTaxiing(?p, ?c)

Table 2. Rules for airplane events recognition, obtained using FOILS.

the final rule obtained using FOILS. The learned rules recognize events within
clips; this allows to cope with the case in which an event is shown using more
than one shot. In some cases we can observe that FOILS learns some literals that
are not necessary for the event definition, however this does not affect negatively
the performance of the rule. This fact may happen since FOILS does not take
into account the structure of the ontology; an example is the MovingObject(?p)
literal in the landing and taking-off rules, that is not necessary due to the fact
that in our ontology this concept is an hypernym of airplane.

We have then applied the rules to the videos, evaluating the results, in term
of precision and recall, for Web Dataset and Trecvid 2005 video separately and
together, as shown in Tab. 3. As it can be observed the overall results for all the
rules are extremely promising. Since the rules that describe flying and landing
are more simple, their performance is better than that of the rules that model
landing and taking-off. The main difference in the performance results between
the two datasets is related to the quality of the images and to the presence of
superimposed graphics, that were present only in the Trecvid news videos. Since
the performance of the rules is dependent on the performance of the detectors
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and tracker we have investigated the cases in which the rules failed. The main
cause of failure is due to the performance of the simple sky/ground detector, that
uses only the luminance information. In a few cases the fault was the airplane de-
tector, especially when superimposed graphics and text covered the appearance
of the airplane.

Data Set Airplane Action Precision Recall

Web Dataset Airplane flying 0.96 0.94

Web Dataset Airplane takeoff 0.76 0.80

Web Dataset Airplane landing 0.84 0.96

Web Dataset Airplane taxiing 1 0.76

TRECVID 2005 Airplane flying 0.94 0.5

TRECVID 2005 Airplane takeoff 0.3 0.42

TRECVID 2005 Airplane landing 0.66 0.66

TRECVID 2005 Airplane taxiing 1 0.76

Web Dataset + TRECVID 2005 Airplane flying 0.96 0.71

Web Dataset + TRECVID 2005 Airplane takeoff 0.61 0.70

Web Dataset + TRECVID 2005 Airplane landing 0.90 0.90

Web Dataset + TRECVID 2005 Airplane taxiing 0.94 0.84
Table 3. Precision and recall of Airplane flying, Airplane takeoff, Airplane landing,
Airplane taxiing for different datasets

5 Conclusions

In this paper a framework for automatic event video annotation has been pre-
sented. A Pictorially Enriched Ontology has been defined, to perform automatic
semantic annotation of videos, and a set of rules, used to describe events, has
been learned from positive and negative video examples, using an adaptation
of the First Order Inductive Learner technique to the Semantic Web Rule Lan-
guage. The performance has been tested using different datasets to demonstrate
the effectiveness of the proposed approach. Our future work will investigate
techniques to incorporate learning of constants and function symbols in our
framework, to permit to insert numerical temporal specifications in the event
description.
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