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ABSTRACT

In this paper we propose a novel image descriptor built by
computing the covariance of pixel level features on densely
sampled patches and encoding them using their covariance.
Appropriate projections to the Euclidean space and feature
normalizations are employed in order to provide a strong
descriptor usable with linear classifiers. In order to remove
border effects, we further enhance the Spatial Pyramid rep-
resentation with bilinear interpolation. Experimental results
conducted on two common datasets for object and texture
classification show that the performance of our method is
comparable with state of the art techniques, but remov-
ing any dataset specific dependency in the feature encoding
step.
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1. INTRODUCTION

Image representation for object and scene recognition have
been a major research direction in computer vision and mul-
timedia retrieval. The basic component of all state of the
art systems are local descriptors. The most famous and ef-
fective ones are SIFT [12]. Once a set of local descriptors
has been extracted from an image, it is necessary to summa-
rize these information in a fixed length image feature. The
Bag Of Words technique [2] has been successfully applied to
solve this problem.

A great amount of research has dealt with feature encod-
ing and pooling in the last years, considerably improving
on the original BoW approach. The Locality-constrained
Linear Coding [21] projects each descriptor on the space
formed by its k-nearest neighbors (k is small, e.g., k = 5).
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This procedure corresponds to performing the first two steps
of the locally linear embedding algorithm [14], except that
the neighbors are selected among the atoms of a dictionary
rather than actual descriptors, and the weights are used as
features instead of being mere tools to learn an embedding.

Fisher encoding [13], models the visual words with a Gaus-
sian Mixture Model (GMM) and captures the average first
and second order differences between the image descriptors
and the centers of the GMM. In the Vector of Locally Ag-
gregated Descriptors [6] (VLAD), each local descriptor is
associated to its nearest visual word. The idea of the VLAD
descriptor is to accumulate, for each visual word, the differ-
ences of the vectors assigned to it, thus characterizing the
distribution of the vectors with respect to the center.

The techniques discussed so far have all focused on im-
proving the local descriptors encoding, relaying on training
data for codewords generation. We observe that the code-
words training step introduces a dependency on the dataset
on which they are computed, thus producing an image rep-
resentation that inherently lacks of generality. Torralba
and Efros [15] highlighted the presence of a “bias” in ev-
ery dataset, which the classifier could relay on to improve
its performance. Here we want to point out that the same
dependency holds for the encoding step. Introducing a quan-
tization of the feature space ties dataset characteristics to
the image representation, in the choice of both the position
and the number of cluster centers to use. In fact, the quanti-
zation is learned from the training set (e.g. using k-means),
therefore the cluster centers reflect the training data distri-
bution. Furthermore, the optimal number of cluster centers
can vary depending on the dataset. For example, in [1], the
best accuracy using regular BoW is reached at 4k clusters
for the Caltech-101 dataset, while in Pascal VOC 2007 it
does not reach saturation even with 25k cluster centers.

Recently a new local feature has gained interest in the im-
age representation community: the covariance of pixel-level
features. Firstly introduced by [18] for pedestrian detection,
it has been successfully employed for texture classification
and object tracking [11].

In this paper we propose to densely compute this local de-
scriptor over an image, and incorporating it in a Weighted
Spatial Pyramid image representation computing its covari-
ance. This approach has been named Covariance of Covari-
ance Features. The main contributions of our work include a
deep analysis of pixel-level features and normalization tech-
niques suitable for image classification and an extension of
the Spatial Pyramid representation, that exploits bilinear in-
terpolation to overcome border effects artifacts. The method
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Figure 1: A schematization of the proposed approach.

has been tested on two public datasets of object and texture
classification.

2. COVARIANCE OF COVARIANCES

To describe an image we follow a hierarchical approach
that starts with pixel features, that are summarized to ob-
tain patch features (small square image regions), that are in
turn summarized to obtain region descriptors. The summa-
rization is in both steps realized through covariance matri-
ces.

Let I be a gray-level square image patch of size r x r
and f(z,y) be a d-dimensional feature vector extracted at
position (z,y) € L = {l..r,1..r}; f(x,y) can include pixel
position, intensity value and gradient information. To ob-
tain a representation of patch I, we summarize pixel features
by computing their covariance matrix C:

C= o 3 (f@y) Dty -, ()
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where f is the mean pixel feature vector inside patch I. The
estimated covariance matrix encodes information about the
variance of the features and their correlation, and provides
a good insight on I.

Since covariances belong to the Riemannian manifold of
symmetric positive semi-definite matrices, Euclidean opera-
tions cannot be computed among them. In [18], a projec-
tion from the Riemannian manifold to a Euclidean tangent
space is proposed, allowing, for example, the computation of
the algebraic mean between the projected covariances. The
tangency point is denoted as matrix T. The aforementioned
projection is obtained by:

C’ = log(C) 2 T7 log (T’%CT’%) Tz,  (2)

where log(-) is the matrix logarithm. As observed in [16]
the identity matrix is a suitable projection point, further
simplifying the projection step which reduces to a simple
matrix logarithm.

Since C’ is also symmetric, its vectorized version, of size
di = (d* + d)/2, represents the patch feature:

FI = vec(C/) = [C/nC/120/13...Clgzclgg...cldd}. (3)

A rectangular region R, that contains several overlapped
patches, is described by computing the covariance of the
patches features. The same problems encountered when
computing patch features arise here, and the projection of
the covariance matrices on a Euclidean space is therefore
applied, along with the matrix vectorization. The feature
vector thus obtained is dr = (df + di)/2 dimensional.

Several pixel features have been tested in our method, all
of them exploiting only gray-level pixel information:

e pixel position [z y];
gray-level intensity [I];
gradient magnitude and orientation [M OJ;
first order derivatives (|1 |Iy|];
second order derivatives [|Izz| [Iyy| | Lsy];
third order derivatives [|lzza| |[Tyyy| [Lzey| [ Tyye| |-
Operator | - | denotes the absolute value. Various combina-
tions of pixel features have been investigated in the experi-
mental section (Sec. 3).

Fig. 1 provides a summary of the proposed approach: lo-
cal features are obtained by computing the covariance of
pixel features on an image patch. Patch features contribute
to build a region descriptor, weighted according to their dis-
tance from the region center. As a consequence, a patch
is considered in more than one region (see Sec. 2.1). The
features of the patches that contribute to a region are again
encoded with their covariance. The final descriptor is given
by the vector of all region covariances.

2.1 Spatial Pyramid Regions Weighting

Spatial Pyramid representation [10] is a fundamental tech-
nique in image classification, as it introduces spatial infor-
mation in approaches like the Bag Of Words [2], that inher-
ently lack geometric cues. The approach consists in recur-
sively partitioning the image into non-overlapped regions,
and concatenating regions features to form the image rep-



Table 1: Mean Recognition Rate per class using 15
training images on Caltech-101 with single patch size

(16 x 16).

| Feature vector | MRR |
1] 4.09
[M O] 19.13
[[La| |1y]] 27.15
(x| Hyy| [Loy]] 38.97
[Tzaa| [Tyyyl [Tzayl] 37.73
[Ty [Loa] [ Lyyl [Lzy]] 55.32
[2y M O |Iox| |Iyy| [Loy]] 60.38
[xy M O |Lox| Hyy| | Loy| | Looa| [Tyyy| | Loayl] 64.17
Fﬂy-’Mg {]zﬂ |I|y?|;| |IT1|/‘ ‘ITTI| ||Iyyy| |Izzy| |Iyyw|] 65.20
2y I MO|L| 1| [Tz [Ty | Loy

: : 65.43
aaa| [Iyyy| [ Lzay] [Lyya]]

resentation. Usually, the partition consists in dividing the
image in four regions, and then dividing each region in four
other sub-regions, leading to 21 regions in total (the entire
image is also considered).

In our approach, we propose to enhance the spatial pyra-
mid representation by introducing a bilinear interpolation.
This consists in distributing each patch contribution be-
tween the neighboring regions, based on the patch distance
from the region center. Given a patch I centered in I. and
a region R centered in R, of size w X h, the contribution of

I for R is:
I.. - R I.,— R
N=(1- cx cx 1— cy cy . 4
W = (1- B ) (1o TR g

Considering that feature normalization plays an impor-
tant role when describing images, we chose an appropri-
ate normalization technique for each step of the algorithm:
power normalization (applying a square root to each individ-
ual feature value, maintaining the sign) is applied to both
patch features and to region features. After the concate-
nation of all the region features (to obtain the image rep-
resentation), L2-normalization is applied. This last step of
normalization has been proven to be appropriate when deal-
ing with linear classifiers [1].

3. EXPERIMENTAL RESULTS

In this section, we test our approach in two different appli-
cations: object classification and texture recognition. First
of all, we present a detailed analysis of the performance of
the different pixel features on the well known Caltech-101
dataset. We demonstrate that our approach achieves perfor-
mance comparable with state-of-the-art techniques, without
requiring to build a codebook, thus overcoming any dataset
dependency. Later we focus on KTH-TIPS dataset where
we compare our approach with other state-of-the-art tech-
niques based on covariance features. In all the experiments,
a linear SVM was employed.

3.1 Object Classification

We use Caltech-101, since it represent a key benchmark for
the object recognition community. It contains 9144 images
from 101 object categories and one background category.
The object categories can be very complex but a common
viewpoint is chosen, with the object of interest at the center
of the image at a uniform scale. The number of images per
category varies from 31 to 800.

Table 2: Comparison between different encondings
and local features; several state-of-the-art solutions
are also reported. All results are obtained with 15
training images on Caltech-101 with multiple patch
sizes.

| Feature | Encoding | MRR |
Cov BOW 37.29
Cov Covariances 63.41
Cov Covariances Weighting 67.07
Cov Covariances Weighting + Power | 68.13
SIFT BOW 43.98
SIFT BOW + Hellinger Kernel 46.23
SIFT Homogeneous Kernel Map [20] 63.64
dHoG LLC [21] 65.20
Lazebnik et al. [10] 56.40
Wang et al. [21] 65.43
Huang et al. [5] 66.88
Jiang et al. [7] 67.50
Tuytelaars et al. [17] 69.20
C. Zhang et al. [22] 69.58
Feng et al. [3] 70.34
Kong et al. [§] 75.10

As experimental protocol, we follow a common experimen-
tal setting: we randomly select 15 images for training and
at most 50 images for testing for each category. Images are
hierarchically partitioned into 1 x 1, 2 x 2 and 4 x 4 regions.
We report the Mean Recognition Rate (MRR) per class, i.e.
the results are normalized based on the number of testing
samples in that class and averaged over five independent
runs.

In the first experiment we investigate how the different
pixel features, employed in the covariance matrix, affect the
overall performance. Each feature is extracted at a single
scale, 16 x 16, over a dense regular grid with a spacing of
three pixels. Table 1 presents the accuracy of each set of
features, the best combination of two sets of features (6th
Row), of three sets of features (7th Row) and so on. Re-
sults show that the best single features are the second order
derivatives that obtain a MRR of 38.97%. In addition, en-
riching the feature vector with pixel coordinates leads to
a large improvement of the performance: for example, the
feature vector with second order derivatives and coordinates
achieves 55.32%. In general, we observe that the more fea-
tures we add, the better we get.

In the second experiment, we adopt the setting of other
approaches, computing the patch features at four scales (16 x
16, 24 x 24, 32 x 32, 40 X 40) and use them with different em-
bedding strategies. As shown in Table 2, the straightforward
Bag of Words is not able to take advantage of the covariance
feature properties and provides poor results. Instead, em-
ploying the covariance of covariance features strongly out-
performs the Bag of Words approach. Our weighting strat-
egy, based on bilinear interpolation, and the proper use of
the power normalization further improve the results. In the
middle part of the Table 2, we report a direct comparison
with several techniques: Bag of Words approaches (with
linear and nonlinear kernels) and very successful methods
that publicly shared their code [20], [21]. For the Bag of
Words approaches we use 4000 visual words since we ob-
served that the performance tends to saturate at this code-
book size, while, for the other techniques, we use the values



Table 3: Classification accuracy for the KTH-TIPS
dataset.

| Approach | Acc. |
Our Method 98.62
P. Li et al. [11] 98.12

J. Zhang et al. [23] | 95.40
Hayman et al. [4] 91.30
Lazebnik et al. [9] 91.3
Varma et al. [19] 92.4

suggested by the authors. All of these methods use the same
experimental settings (same patch feature sizes, same spa-
tial pyramid and same classifier). Results clearly state the
effectiveness of our solution. For completeness, we include in
Table 2 several recent solutions that are quite comparable
to our method. Note that our approach obtains competi-
tive results, while constructing dataset independent image
features, as none of the others do. It is clear that recent dic-
tionary learning techniques may definitely outperform our
proposal at the price of being strongly dependent on the
specific dataset.

3.2 Texture Classification

For texture classification, we test our technique on KTH-
TIPS Dataset [4]. Images are captured at nine scales span-
ning two octaves (the relative scale changes from 0.5 to
2), viewed under three different illumination directions and
three different poses, thus giving a total of 9 images per
scale, and 81 images per ten materials. The size of samples
is 200 x 200 pixels.

Texture recognition is as classic application where covari-
ance features achieve one of its best performances. For this
reason, we present a comparative evaluation of our approach
with five texture classification methods. Table 3 shows the
classification accuracy using 40 training images and the re-
maining for test. Even if all the techniques achieve very high
results, this experiment shows that our image representation
is robust and useful for different applications.

4. CONCLUSION

In this paper we showed how the hierarchical application
of the covariance matrix descriptor is able to provide a very
effective feature vector, which can be employed in object
and texture classification problems. Despite their simplicity
and reduced dimensionality, pixel features extracted from
gray-level images demonstrate their effectiveness when sum-
marized with our proposal. The use of bilinear interpolation
jointly with the spatial pyramid representation further en-
hances the system performance.
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