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Abstract. Action recognition in videos is a relevant and challenging
task of automatic semantic video analysis. Most successful approaches
exploit local space-time descriptors. These descriptors are usually care-
fully engineered in order to obtain feature invariance to photometric and
geometric variations. The main drawback of space-time descriptors is
high dimensionality and efficiency. In this paper we propose a novel de-
scriptor based on 3D Zernike moments computed for space-time patches.
Moments are by construction not redundant and therefore optimal for
compactness. Given the hierarchical structure of our descriptor we pro-
pose a novel similarity procedure that exploits this structure comparing
features as pyramids. The approach is tested on a public dataset and
compared with state-of-the art descriptors.
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1 Introduction and related works

Human behavior recognition is a challenging computer vision task that have re-
cently attracted wide research effort; this is mainly due to the need of automatic
semantic analysis of video data in several application fields such as intelligent
video-surveillance systems and digital libraries. In video surveillance it is often
the case that human operators are simply not able to attentively observe a large
amount of screens in parallel; moreover in forensics, retrieval of video footage
containing well defined human actions is invaluable.

Several techniques have been developed in the recent years mainly based on
the use of local descriptions of the imagery. Following the success of SIFT [1] in
object and scene recognition and classification [2], several space-time extensions
of the local patch descriptors have been proposed. Similarly to local image fea-
tures [3, 4] space-time features are localized through a detection step and then
computed on the extracted patches; videos are represented as a collection of
descriptors. Space-time descriptors represent the appearance and the motion of
a local region and are engineered in order to retain invariance to geometric and
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photometric transformations. Laptev et al. [5] defined a descriptor as a concate-
nation of histograms of oriented 2D gradients and histograms of optical flow.
In order to reduce the computation burden an extension of SURF have been
presented in [6]. Scovanner et al. [7] extended the SIFT to three-dimensional
gradients normalizing 3D orientations bins by the respective solid angle in order
to cope with the issue of the uneven quantization of solid angles in a sphere.
To solve this issue Kläser et al. [8] proposed to exploit 3D pixel gradients devel-
oping a technique based on Platonic solids. Finally Ballan et al. [9] developed
an efficient descriptor decorrelating the spatial and temporal components and
creating separated histograms of 3D gradient orientations. However, all of these
descriptors are extremely high-dimensional and often retain redundant informa-
tion.

In the same time, researchers have exploited moments and invariant moments
in pattern recognition [10]. Moments are scalar quantities used to characterize a
function and to capture its significant features and they have been widely used
for hundreds of years in statistics for description of the shape of a probability
density function. Moments and in particular Zernike moments are a common
choice in shape representation [11]. Zernike moments have been also proposed in
action recognition as holistic features in [12] to describe the human silhouettes.

Despite the fact that feature matching is an important step in the recognition
process few works have analysed it. Lowe [1] showed that in order to retrieve
meaningful patches it is necessary to look at the distances of the second nearest
neighbour. More recently Bo et al. [13] provided a kernel view of the match-
ing procedure between patches. Their work formulates the problem of similarity
measurement between image patches as a definition of kernels between patches.
Since these kernels are valid Mercer kernels it is straightforward to combine or
plug them into kernelized algorithms.

In this paper we propose a new method for classification of human actions
based on an extension of the Zernike moments to the spatio-temporal domain.
Furthermore, we propose a kernel suitable for matching descriptors that can be
hierarchically decomposed in order to obtain a multiple resolution representa-
tion. This kernel is inspired by multi-resolution matching of sets of features [14,
15], but instead of matching sets of features we match single space-time patches
at multiple resolutions. To the best of our knowledge 3D Zernike moments have
never been used as local space-time features and the pyramid matching scheme
has never been used to define kernels between single features but only to match
sets of features. Experimental results on KTH dataset shows that our system
presents a low computational time maintaining comparable performance with
respect to the state-of-the-art. The rest of the paper is organized as follows.
The generalization of the Zernike moments to the three dimensions is presented
in the next section. The Pyramid Kernel Descriptors are introduced in Sect. 3.
The techniques for action representation and classification are presented in Sect.
4. Experimental results on the standard KTH dataset are discussed in Sect. 5.
Finally, conclusions are drawn in Sect. 6



Space-time Zernike Moments and Pyramid Kernel Descriptors for Actions 3

2 Space-time Zernike Moments

We first describe the formulation of the Zernike moments in two dimensions, and
then introduce the generalization to the space-temporal domain. Let x = [x1, x2]
be the Cartesian coordinates in the real plane R2. Zernike polynomials are a set
of orthogonal functions within the unit disk composed by a radial profile Rnm
and a harmonic angular profile Hm (ϑ) defined as follows

Vnm (ρ, ϑ) = Rnm (ρ) ·Hm (ϑ) (1)

where ρ =
√
x21 + x22, ϑ = tan−1

(
x2

x1

)
, Hm (ϑ) = eimϑ and

Rnm (ρ) =


(n−|m|)/2∑

s=0

(−1)s(n−s)!ρn−2s

s!(n+|m|
2 −s)!(n−|m|

2 −s)!
for n− |m| even

0 for n− |m| odd

. (2)

The index n is named “order” and is a non-negative integer, and m is called
“repetition” and it is an integer such that n − |m| is even and non-negative.
In Fig. 1 some examples of the radial profile Rnm are shown. Both the Zernike
polynomials and the radial profile Rnm (ρ) satisfy the orthogonal condition

2π∫
0

1∫
0

V ∗nm (ρ, ϑ)Vn′m′ (ρ, ϑ) ρdρdϑ =
π

n+ 1
δnn′δmm′ (3)

and
1∫

0

Rnm (ρ)Rn′m′ (ρ) ρdρ =
1

2 (n+ 1)
δnn′δmm′ (4)

where δ indicates the Kronecker delta. Zernike polynomials are widely used to
compute the Zernike moments [16, 17].

(a) (b)

Fig. 1. a) Radial profile up to the 2nd order; b) Radial profile for the 6nd order.

Let f (x) be any continuous function, the Zernike moments are

Anm (x0) =
n+ 1

π

∫ ∫
‖x−x0‖≤1

f (x)V ∗nm (x− x0) dx1dx2 (5)
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where x0 denotes the point where the unit disk is centered. In this work we are
interested in the computation of the Zernike moments for functions as f : R3 7→
R where the third dimension is the time. To get the 3D Zernike polynomials
[18, 19], the harmonic angular profile is substituted by the spherical harmonic
functions

Y lm (ϑ, ϕ) = N l
mP

l
m (cosϑ) eilϕ (6)

where P lm denotes the Legendre function and N l
m is a normalization factor

N l
m =

√
2m+ 1

4π

(m− l)!
(m+ l)!

. (7)

The spherical harmonic functions up to the 3rd order are shown in Fig. 2. In
this case, given an order n, we use only the values of m ≥ 0, and the index l is
an integer such as −m ≤ l ≤ m. Then, the 3D Zernike polynomials are defined
in spherical coordinates as follows

V lnm (ρ, ϑ, ϕ) = Rnm (ρ) · Y lm (ϑ, ϕ) (8)

and they satisfy the orthogonal condition within the unit sphere

1∫
0

π∫
0

2π∫
0

[
V lnm (ρ, ϑ, ϕ)

]∗
V l
′

n′m′ (ρ, ϑ, ϕ) sin (ϑ) dϑdϕdρ = δnn′δmm′δ
ll′ . (9)

Let ξ = [x, t] be the generic point in the real plane R2 at the time t, the 3D
Zernike moments are

Alnm (ξ0) =
3

4π

∫
‖ξ−ξ0≤1‖

f (ξ)

[
V lnm

(
ξ − ξ0

σ

)]∗
dξ (10)

where ξ0 is the point where the unit sphere is centered, and σ tunes the size
in pixel of the unit sphere for each coordinate. This σ is necessary because the
patches, that we need to describe by using the 3D Zernike moments, can have
different sizes in space and time. We use these space-time Zernike moments as
descriptors for the local patches. The orthogonal condition (see Eq. 9) ensures
that there is no redundant information in the descriptor allowing to have a
compact representation of the local feature. Fig. 3 shows that we can obtain
a rough but representative reconstruction of space-time cuboid from the 3D
Zernike moments. In particular, we exploit the phase of these complex moments
since from preliminary experiments proved to be more effective.

3 Pyramid Kernel Descriptors

We introduce a descriptor matching kernel inspired by multi-resolution match-
ing of sets of features[15, 14]; Grauman and Darrel [15] proposed the Pyramid
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Fig. 2. Spherical harmonic functions up to the 3rd order.

Matching kernel to find an approximate correspondence between two sets of fea-
tures points. Informally, their method takes a weighted sum of the number of
matches that occur at each level of resolution, which are defined by placing a
sequence of increasingly coarser grids over the features space. At any resolution,
two feature points match if they fall into the same cell of the grid; number of
matches computed at finer resolution are weighted more than those at coarser
resolution. Later, Lazebnik et al. [14] introduced the Spatial Pyramid Matching
kernel that work by partitioning the image into increasingly fine sub-regions and
computing histograms of local features found inside each sub-regions.

Differently from these approaches our idea is to adapt the pyramid scheme
for computing the similarity between two descriptor points. This allows to com-
pute the similarity between two descriptors at multiple resolutions, exploiting a
more distinctive representation when available and discarding it when at higher
resolutions becomes noisy. We call our proposed approach “Pyramid Kernel De-
scriptors” because feature points are matched considering the descriptors as a
multi-resolution set.

We consider a set of space-time interest points X = {ξ1, . . . ξs} and their
descriptors D = {d1, . . . , ds}, where each descriptor can be organized in p sets
{s1, . . . , sp} hierarchically ordered. The pyramid kernel between di and dj is
defined as a weighted sum of the similarities of sets found at each level of the
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Fig. 3. Frames of a cuboid (top). Reconstructed cuboid from complex 3D Zernike
moments up to the 6th order (bottom).

pyramid:

K(di, dj) =

p∑
k=0

wkkc(s
k
i , s

k
j ) (11)

where wk is the weight and kc(s
k
i , s

k
j ) is a kernel to compute similarity between ski

and skj . The similarity found at each level in the pyramid is weighted according to
the description resolution: similarities made at a finer resolution, where features
are most distinct, are weighted more than those found at a coarser level. Thus,
if the p sets are arranged in ascending order the weight at level k can be defined
as wk = 2k−p. If kc is a valid kernel, our proposed kernel is a valid Mercer
kernel for the closure property of kernels since it is a weighted sum of valid
kernels. As described in sect. 2, our description based on space-time Zernike
moments have a pyramid structure defined by the orders. In fact, lower order
moments describe low frequencies of each cuboid while higher order moments
encode higher frequencies. We define sk as the concatenation of the phases of the
complex Zernike moments for the first k orders: sk =

(
arg(A0

00), . . . , arg(Alkm)
)
,

where m and l are set according to Sect. 2. We use a normalized scalar product:

kc(s
k
i , s

k
j ) =

ski ·s
k
j

‖ski ‖‖skj ‖
, as a kernel between ski and skj , which is a valid Mercer

kernel. Note that we normalize the scalar product computed at each level in
order to have comparable values in the final sum.

For example, if we use a two level pyramid kernel descriptor then s0 =(
arg(A0

00)
)
, s1 =

(
arg(A0

00), arg(A−111 ), arg(A0
11), arg(A1

11)
)

and the correspond-
ing weights are w0 = 1 and w1 = 1

2 . The final kernel between two space-time
Zernike descriptors di, dj computed up to the nth order is:

K(di, dj) =

n∑
k=0

2k−n
ski · skj
‖ski ‖‖skj ‖

. (12)

4 Action classification

We represent an action as a bag of space-time interest points detected by an
adaptation of the detector proposed by Dollár et al. [20]. This detector applies
two separate linear filters to spatial and temporal dimensions, respectively. The
response function has the form:

R =
(
I ∗ gσ ∗ hev

)2
+
(
I ∗ gσ ∗ hod

)2
(13)
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Fig. 4. Examples of space-time interest points extracted at multiple scales for different
actions. Clips are taken from the KTH dataset: running, walking, boxing and hand-
waving.

where I(x, y, t) is a sequence of images over time, gσ(x, y) is the spatial Gaussian
filter with kernel σ, hev and hod are a quadrature pair of 1D Gabor filters applied
along the time dimension. They are defined as hev(t; τ, ω) = − cos(2πtω)e−t

2/τ2

and hod(t; τ, ω) = − sin(2πtω)e−t
2/τ2

, where ω = 4/τ . The interest points are
detected at locations where the response is locally maximum typically corre-
sponding to the temporal intensity changes. In order to cope with spatial and
temporal scale variations we extract features at multiple scales. Usually these
locations correspond to human body limbs involved in the execution of an action
as can be seen in Fig. 4.

Each point is described using Space-time Zernike moments and then a nearest-
neighbor classifier based on the concept of instance-to-class similarity [21] is used
for action categorization. We choose not to employ descriptor codebooks (as in
bag-of-words approaches) in order to better evaluate the effectiveness of our
descriptor alone.

The instance-to-class nearest-neighbor classifier estimates the class posterior
probability given the query video clip with a non-parametric density estimation
based on local Parzen windows centered on descriptors belonging to the class.
In [21] authors have shown that formulations based on more than one nearest
neighbor per query descriptor do not significantly outperforms the simpler 1-
NN formulation. Given this evidence, the implementation of this simple but
effective classifier boils down to obtaining the most similar descriptor from the
database for each feature extracted in a query clip (generally based on Euclidean
distance between descriptors) and accumulating a vote for the class to which
the database descriptor belongs to. The class with more votes is associated to
the query clip. Instead of using Euclidean distance, we use our pyramid kernel
descriptors (Sect. 3) to select the most similar descriptors which have, for each
feature, the maximum kernel values.

5 Experimental Results

We tested our approach on the KTH action dataset containing six actions (walk-
ing, running, jogging, hand-clapping, hand-waving, boxing) performed several
times by 25 actors under four different scenarios of illumination, appearance
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and scale change. The dataset contains 2391 video sequences with resolution of
160× 120 pixel.
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Fig. 5. Comparison of the two similarity techniques; right) detail showing the effect of
pyramid matching descriptors on high order moments.

We used a leave-one-out procedure specifically we used 24 actors’ clips as a
training set and the remaining actor’s clips as a test set. Performance is pre-
sented as the average accuracy of 25 runs, each with a different person. First we
tested our descriptor using the nearest-neighbor classifier based on the Euclidean
distance and increasing the amount of moments (see Fig. 5). With this approach
the use of high order moments degrades the performance of the classifier. This
is due to the fact that the high order filters response in small scale cuboids is
mostly noisy. Then we used our pyramid similarity kernel increasing the levels
of detail. As discussed in Sect. 3 levels with higher order moments are weighted
more than levels with lower order moments. We can see that in this case we can
exploit the higher details captured by high order moments without degrading
the overall classifier performance.

The confusion matrix reported in Fig. 6 shows that as expected jogging and
running are the most difficult actions to discriminate while for all other classes
results are quite satisfying.

In Tab. 1 we compare our descriptor with the state-of-the-art on KTH dataset
respect to the computation time, storage needs and accuracy. Computation time
is measured on our machine when the code was available while it is reported from
the original publication if not. The accuracy is reported from the experiments
reported in the original publication. We can see that Pyramid Zernike 3D de-
scriptors are the smallest in terms of storage and are fast as other non-trivial
implementations and C/C++ implementations; note that Gradient PCA is a
simple concatenation of pixel gradient values and projection on principal com-
ponents. Our descriptor is implemented without any optimization in MATLAB.

6 Conclusions

In this paper we have presented a method for action classification based on
a new compact descriptor for spatio-temporal interest points. We introduce a
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Fig. 6. Confusion matrix for the KTH dataset.

Method Size Computation time Accuracy

Pyramid Zernike 3D 84 0.0300 s 91.30%

Gradient + PCA[20] 100 0.0060 s 81.17%

3D SIFT[7] 640 0.8210 s 82.60%

Ext Grad LBP-TOP + PCA[22] 100 0.1000 s 91.25%

3DGrad[9] 432 0.0400 s 90.38%

HOG-HOF3[5] 162 0.0300 s 91.80%

HOG3D3[8] 380 0.0020 s 91.40%

SURF3D3[6] 384 0.0005 s 84.26%

Table 1. Descriptor complexity comparison together with accuracy.

new kernel suitable for matching descriptors that can be decomposed in multi-
resolution sets. The approach was validated on the KTH dataset, showing results
that have a low spatial and temporal computational complexity with comparable
performance with the state-of-the-art. Our future work will deal with evaluation
on more realistic datasets.
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