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Abstract Recognition and classification of human actions for annotation of uncon-
strained video sequences has proven to be challenging because of the variations in
the environment, appearance of actors, modalities in which the same action is per-
formed by different persons, speed and duration and points of view from which the
event is observed. This variability reflects in the difficulty of defining effective de-
scriptors and deriving appropriate and effective codebooks for action categorization.
In this chapter we present a novel and effective solution to classify human actions
in unconstrained videos. In the formation of the codebook we employ radius-based
clustering with soft assignment in order to create a rich vocabulary that may account
for the high variability of human actions. We show that our solution scores very good
performance with no need of parameter tuning. We also show that a strong reduc-
tion of computation time can be obtained by applying codebook size reduction with
Deep Belief Networks with little loss of accuracy.

1 Introduction

With the continuous growth of video production and archiving, the need for au-
tomatic annotation tools that enable effective retrieval by content has accordingly
gained increasing importance. In particular, action recognition is a very active re-
search topic with many important applications such as human-computer interaction,
video indexing and video-surveillance. Existing approaches for human action recog-
nition can be classified as using holistic or part-based information [48, 3]. Most of
the holistic-based methods usually perform better in a controlled environment and
are also computationally expensive due to the requirement of pre-processing the in-
put data. Moreover, these representations can be influenced by motions of multiple
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objects, variations in the background and occlusions. Instead, part-based represen-
tations that exploit interest point detectors combined with robust feature descriptors,
have been used very successfully for object and scene classification tasks in images
[15, 62]. As a result, nowadays most video annotation solutions have exploited the
bag-of-features approach to generate textual labels that represent the categories of
the main and easiest to detect entities (such as objects and persons) in the video
sequence [50, 19].

The definition of effective descriptors that are able to capture both spatial and
temporal features has opened the possibility of recognizing dynamic concepts in
video sequences. In particular, interesting results have been obtained in the defini-
tion of solutions to automatically recognize human body movements, which usually
represent a relevant part of video content [40, 43, 42, 52]. However, the recogni-
tion and classification of such dynamic concepts for annotation of generic video
sequences has proven to be very challenging because of the very many variations in
environment, people and occurrences that may be observed. These can be caused by
cluttered or moving background, camera motion and illumination changes; people
may have different size, shape and posture appearance; semantically equivalent ac-
tions can manifest differently or partially, due to speed, duration or self-occlusions;
the same action can be performed in different modes by different persons. This great
variability on the one hand reflects in the difficulty of defining effective descriptors
and on the other makes it hard to obtain a visual representation that may describe
such dynamic concepts appropriately and efficiently. Furthermore, these part-based
approaches usually do not attempt to localize and track actions that is necessary in
video surveillance applications.

1.1 Effective Spatio-Temporal Descriptors

Holistic descriptors of body movements have been proposed by a few authors.
Among the most notable solutions, Bobick et al. [6] proposed motion history images
and their low-order moments to encode short spans of motion. For each frame of the
input video, the motion history image is a gray scale image that records the location
of motion; recent motion results into high intensity values whereas older motion
produces lower intensities. Efros et al. [14] created stabilized spatio-temporal vol-
umes for each action video segment and extracted a smoothed dense optic flow field
for each volume. They have proved that this representation is particularly suited for
distant objects, where the detailed information of the appearance is not available.
Yilmaz and Shah [60] used a spatio-temporal volume, built stacking object regions;
descriptors encoding direction, speed and local shape of the resulting 3D surface
were generated by measuring local differential geometrical properties. Gorelick et
al. [18] analyzed three-dimensional shapes induced by the silhouettes and exploited
the solution to the Poisson equation to extract features, such as shape structure and
orientation. Global descriptors that jointly encode shape and motion were suggested
in Lin et al. [30]; Wang et al. [55] exploited global histograms of optic flow together
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with hidden conditional random fields. Although encoding much of the visual infor-
mation, these solutions have shown to be highly sensitive to occlusions, noise and
change in viewpoint. Most of them have also proven to be computationally expen-
sive due to the fact that some pre-processing of the input data is needed, such as
background subtraction, segmentation and object tracking. All these aspects make
these solutions only suited for representation of body movements in videos taken in
controlled contexts.

Local descriptors have shown better performance and are in principle better
suited for videos taken in both constrained and unconstrained contexts. They are
less sensitive to partial occlusions and clutter and overcome some of the limitations
of the holistic models, such as the need of background subtraction and target track-
ing. In this approach, local patches at spatio-temporal interest points are used to
extract robust descriptors of local moving parts and the bag-of-features approach is
employed to have distinctive representations of body movements. Laptev [27] and
Dollár [13] approaches have been among the first solutions. Laptev [27, 45] pro-
posed an extension to the Harris-Förstner corner detector for the spatio-temporal
case; interesting parts were extracted from voxels surrounding local maxima of
spatio-temporal corners, i.e. locations of videos that exhibit strong variations of in-
tensity both in spatial and temporal directions. The extension of the scale-space
theory to the temporal dimension permitted to define a method for automatic scale-
selection. Dollár et al. [13] proposed a different descriptor than Laptev’s, by looking
for locally periodic motion. While this method produces a denser sampling of the
spatio-temporal volume, it does not provide automatic scale-selection. Despite of it,
experimental results have shown that it improves with respect to [45].

Following these works, other authors have extended the definition of local in-
terest point detectors and descriptors to incorporate time or combined static local
features with other descriptors so to model the temporal evolution of local patches.
Sun et al. [51] have fused spatio-temporal SIFT points with holistic features based
on Zernike moments. In [56], Willems et al. extended SURF feature to time and de-
fined a new scale-invariant spatio-temporal detector and descriptor that showed high
efficiency. Scovanner et al. [46], have proposed to use grouping of 3D SIFT, based
on co-occurrence, to represent actions. Kläser et al. [24] have proposed a descrip-
tor based on histograms of oriented 3D gradients, quantized using platonic solids.
Gao et al. [16] presented MoSIFT, an approach that extend the SIFT algorithm to
find visually distinctive elements in the spatial domain. It detects spatio-temporal
points with a high amount of optical flow around the distinctive points motion
constraints. More recently, Laptev et al. [28] proposed a structural representation
based on dense temporal and spatial scale sampling, inspired by the spatial pyra-
mid approach of [29] with interesting classification results in generic video scenes.
Kovashka et al. [26] extended this work by defining a hierarchy of discriminative
neighborhoods instead of using spatio-temporal pyramids. Liu et al. [32] combined
MSER and Harris-Affine [38] regions with Dollár’s space-time features and used
AdaBoost to classify YouTube videos. Shao et al. [47] applied transformation based
techniques (i.e. Discrete Fourier Transform, Discrete Cosine Transform and Dis-
crete Wavelet Transform) on the local patches and used the transformed coefficients



4 Lamberto Ballan et al.

as descriptors. Yu et al. [61] presented good results using the Dollar’s descriptor
and random forest-based template matching. Niebles et al. [41] trained an unsuper-
vised probabilistic topic model using the same spatio-temporal features, while Cao
et al. [8] suggested to perform model adaptation in order to reduce the amount of
labeled data needed to detect actions in videos of uncontrolled scenes. Compara-
tive evaluations of the performance of the most notable approaches were recently
reported by Wang et al. [54] and Shao et al. [48].

1.2 Suitable Visual Codebooks

According to the bag-of-features model actions are defined as sets of codewords ob-
tained from the clustering of local spatio-temporal descriptors. Most of the methods
have used the k-means algorithm for clustering because of its simplicity and speed
of convergence [41, 15, 49, 22]. However, both the intrinsic weakness of k-means
to outliers and the need of some empirical pre-evaluation of the number of clusters
hardly fit with the nature of the problem at hand. Moreover, with k-means the fact
that cluster centers are selected almost exclusively around the most dense regions
in the descriptor space results into ineffective codewords of action primitives. To
overcome the limitations of the basic approach, Liu et al. [33] suggested a method
to automatically find the optimal number of visual word clusters through maximiza-
tion of mutual information (MMI) between words and actions. MMI clustering is
used after k-means to discover a compact representation from the initial codebook
of words. They showed some performance improvement. Recently Kong et al. [25]
have proposed a framework that unifies reduction of descriptor dimensionality and
codebook creation, to learn compact codebooks for action recognition optimizing
class separability. Differently, Uemura and Mikolajczyk [39] explored the idea of
using a large number of features represented in many vocabulary trees instead of a
single flat vocabulary. Yao et al. [59] recently proposed a similar framework using
a training procedure based on a Hough voting forest. Both these methods require
higher efforts in the training phase.

1.3 Our Contribution

In this chapter we propose a novel and effective solution to classify human actions in
unconstrained videos. It improves on previous contributions in the literature through
the definition of a novel local descriptor and the adoption of a more effective solution
for the codebook formation. We use image gradient and optic flow to respectively
model the appearance and motion of human actions at regions in the neighborhood
of local interest points and consider multiple spatial and temporal scales. These two
descriptors are used in combination to model local features of human actions and
activities. Unlike similar related works [46, 24], no parameter tuning is required.
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Fig. 1 The proposed solution architecture.

In the formation of the codebook we recognize that the clusters of spatio-
temporal descriptors should be both in a sufficiently large number and sufficiently
distinguished from each other so to represent the augmented variability of dynamic
content with respect to the static case. To this end radius-based clustering [23] with
soft assignment has been used. In fact, with radius-based clustering cluster centers
are allocated at the modes corresponding to the maximal density regions, so result-
ing into a statistics of the codewords that better fits with the variability of human
actions with respect to k-means clustering. To obtain a precise spatio-temporal lo-
calization of each action, the detected spatio-temporal points are associated to each
person, present in the scene, by a particle filter visual tracker. Experiments carried
on standard datasets show that the approach followed outperforms the current state
of the art methods. To avoid too large codebooks we performed codebook com-
pression with Deep Belief Networks. The solution proposed shows good accuracy
even with very small codebooks. Finally, we provide several experiments on the
Hollywood2 dataset [36] and on a new surveillance dataset (MICC-Surveillance),
to demonstrate the effectiveness and generality of our method for action recognition
in unconstrained video domains.

The rest of the chapter is organized as follows1. The full framework of the pro-
posed solution is shown in Section 2, while the spatio-temporal features are pre-
sented in Section 3. Action representation and categorization is presented in Section
4. The experimental results, with an extensive comparison with the state-of-the-art
approaches, are hence discussed in Section 5. Here we also included experiments on
unconstrained videos to demonstrate the effectiveness of the approach also in this
case. Conclusions are drawn in Section 6.

1 Please note that an earlier version of this work has recently appeared in IEEE Transactions on
Multimedia [4].
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2 Action Classification Architecture

The architectural design of the proposed solution, based on an effective bag-of-
features model, is shown in Fig. 1.

2.1 Visual Dictionary Formation

The basic idea of the bag-of-features model is to represent visual content as an
unordered collection of “visual words”. To this end, it is necessary to define a vi-
sual dictionary from the local features extracted in the video sequences, performing
a quantization of the original feature space. The descriptors used to represent the
spatio-temporal interest points are presented in the following Section 3.

The visual dictionary (codebook) is generated by clustering of a set of local de-
scriptors and each cluster is treated as a visual word. Typically it is used the k-means
algorithm because of its simplicity and convergence speed. However, it has been
shown that using this algorithm the cluster centers tend to coalesce around the denser
regions of the feature space, thus not describing other informative regions. This is-
sue is particularly important in the densely sampled space of the spatio-temporal
features used in our approach. In the work of Jurie and Triggs [23] it has been
shown that a different approach, namely radius-based clustering, is able to generate
better visual dictionaries for the images that arise in natural scenes. We have there-
fore used a radius-based clustering technique, following a mean-shift approach [11],
that improves the performance of the system over k-means. This issue is presented
in detail in Section 4.

2.2 Person Tracking and Data Association

Person tracking is used to assign the detected spatio-temporal interest points to each
person present in a video, to localize both in space and time each recognized action.
The tracker adopted in our system implements a particle filter based tracking algo-
rithm, presented by [2], that tracks position, size and speed of the target, describing
the target appearance with its color histogram (using hue and saturation channels).
The tracker is initiated using the human detector of [12], implemented in OpenCV.
The detector is run frame-wise to obtain both new targets to follow and measures
for existing tracks. Measures obtained from the people detector are associated to
targets by solving a data association problem, using a fast greedy algorithm that has
a much lower complexity than the optimal solution obtainable with the Hungarian
algorithm [58]. This greedy algorithm can be executed in real-time, as needed in
video-surveillance applications, and works as follows: a matrix M that contains all
the matching scores mi, j between the ith target and the jth measure of the person
detector is computed. The matching score is computed as:
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Fig. 2 Original frame, hue/saturation histogram and person detector generated likelihood com-
puted for the farthest target (highlighted with red bounding box). In this example the pedestrian de-
tector is run at a single scale; histogram likelihood is generated using the values of the Batthacharya
distance between the template histogram and a corresponding (same scale and aspect ratio) win-
dow. In both cases scale and aspect ratio variations are not considered, for the sake of visualization.

mi, j = e−
d2
i, j
D (1)

where di, j is the Euclidean distance between the static part of the model (position
and size) of the target and the position and size of the detected person (represented
using top-left and bottom-right coordinates of the bounding boxes) and D is adap-
tively chosen based on the target size.

The maximum mi, j are iteratively selected, and the i rows and j columns belong-
ing to target and detector in M are deleted. This is repeated until no further valid
mi, j is available. To avoid the erroneous association of a detection to a target two
approaches are followed: i) only the associated detections with a matching score
mi, j above a threshold are used, to avoid that a detection that is far from a target is
matched; ii) if a detection overlaps more than one target no association is performed.
If a detection is not associated to any target and does not overlap any existing target
then it is used to start a new track.

The template of the target appearance is updated every time a new detection
is associated to the track. In this way we prevent template drift and we allow the
color histogram to adapt with respect to illumination changes and maneuvers which
can change the target appearance. The state update equation, defined over the 8-
dimensional state vector xk (composed by 4 components for position and size and 4
components for their velocities), realizes a 1st -order dynamic model:

xk = Axk−1 + vk−1, A =
[

I4 I4∆ t
0 I4

]
, (2)
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Fig. 3 Example of multiple person tracking, spatio-temporal interest point detection and their as-
sociation to the tracks.

where I4 is an 4×4 identity matrix, ∆ t is the time step and vk−1 is an additive, zero
mean, isotropic Gaussian uncertainty term that represents the uncertainty in the state
update. This uncertainty is parametrized in terms of the standard deviation on each
component of the state vector. The measurement model exploits the results of the
person detector whenever they are available.

The person detector likelihood is strongly peaked in presence of a target, as
shown in the third column of Fig. 2. This behavior allows to detect as distinct ob-
jects even very close pedestrians, but is not suitable to use it as likelihood of the
target [1] since in particle weight computation it could assign very high weights
to a few or no particles, and almost uniform low weights to the remaining popula-
tion, leading thus to a degeneracy problem. To deal with this issue the target model
of the particle filter is based on the color histogram of the tracked object, aiming
at robustness against non-rigidity, rotation and partial occlusion; after updating the
template histogram with the new measure histogram, weights are computed accord-
ing to the Batthacharya distance between the particle and the template histograms.
On the other hand the color histogram is too weak to be used as an aspect model in
a real-world video-surveillance scenario and should not be used as a sole measure-
ment provider, as shown in the second column of Fig. 2; this is due to background
pixels contaminating the template and the lack of discriminativity of the histogram
caused also by its subsampling (we used eight hue bins and eight saturation bins, to
reduce sensitivity to light conditions).

To improve the particle filter capability to effectively track the target, even if its
appearance is not strongly characterized, the tracking method implements a partic-
ular technique, based on the use of the similarity of the current estimate with the
original target histogram as an index of tracking quality, to manage the uncertainty
in the state update equation by means of on-line adaptation of the error vk−1. In
particular, let us consider the case where the variances of position and size of the
target are set to very high values. In this case the filter samples over a wide enough
area to maximize the possibility of capturing the target in case of erratic changes in
direction or velocity. The pitfall in this strategy, however, is that it also increases the
likelihood that the particle filter will become distracted by spurious similar patches
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in the background. Considering also the variances of the velocities the problem is
even worse: from equation 2, in the update rule for propagating a particle from time
k−1 to k, the uncertainty in the dynamic component is propagated to the static com-
ponent. To reduce this effect a blindness value is computed by passing the similarity
of estimate and original target histogram through a sigmoid; this blindness value is
used to adjust the variances in such a way that the noise in the static component of
the state observations is never amplified by the noise in the dynamic components.
This allows the tracker to switch between two different behaviors: one that relies on
the predicted motion of the target and one that behaves like a random-walk model.

2.3 Action Classification and Track Annotation

By mapping the features associated to each tracked person in a video to the vocab-
ulary, we can represent it by the frequency histogram of visual words. In order to
reduce outliers, histograms of tracks that contain too few interest points, are dis-
carded. Then, the remaining histograms are fed to a classifier to predict the action
category. In particular, classification is performed using non-linear SVMs with the
χ2 kernel. To perform multi-class classification we use the one-vs-one approach. To
this end we train a binary SVM classifier for each pair of action classes for a total of
n(n−1)

2 classifiers. Action is predicted considering the output of each SVM as a vote
for the correspondent action and using a majority voting procedure. Fig. 3 shows an
example of the tracker results and features association.

3 Fusing Spatio-temporal Local Descriptors of Appearance and
Motion

Spatio-temporal interest points are detected at video local maxima of the Dollár’s
detector [13] applied over a set of spatial and temporal scales. Using multiple scales
is fundamental to capture the essence of human activity. To this end, linear filters
are separately applied to the spatial and temporal dimension: on the one hand, the
spatial scale permits to detect visual features of high and low detail; on the other, the
temporal scale allows to detect action primitives at different temporal resolutions.
The filter response function is defined as:

R =
(

I ∗gσ ∗hev

)2
+
(

I ∗gσ ∗hod

)2
(3)

where I(x,y, t) is the image sequence, gσ (x,y) is a spatial Gaussian filter with scale
σ , hev and hod are a quadrature pair of 1D Gabor filters that provide a strong response
to temporal intensity changes for periodic motion patterns, respectively defined as:
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Fig. 4 Response of the spatio-temporal interest point detector at two temporal scales τ1 < τ2 (low
response in blue, high response in red); first row: original video frames, second row detector re-
sponse at temporal scale τ1 (mostly due to motion of human limbs); third row: detector response
temporal scale τ2 (mostly due to motion of human torso).

hev(t;τ,ω) =−cos(2πtω)e−t2/τ2
(4)

hod(t;τ,ω) =−sin(2πtω)e−t2/τ2
(5)

where ω = 4/τ . In the experiments we used σ = {2,4} as spatial scales and τ =
{2,4} as temporal scales. Fig. 4 shows an example of temporal scaling of human
body parts activity during walking: torso has high response at high temporal scale,
while limbs respond at the lower scale.

Three-dimensional regions of size proportional to the detector scale (6x) are
considered at each spatio-temporal interest point, and divided into equally sized
sub-regions (three for each spatial dimensions along the x and y, and two for the
temporal dimension t), as shown in Fig. 5.

For each sub-region, image gradients on x, y and t are computed as:

Gx = I(x+1,y, t)− I(x−1,y, t) (6)
Gy = I(x,y+1, t)− I(x,y−1, t) (7)
Gt = I(x,y, t +1)− I(x,y, t−1) (8)

and the optic flow with relative apparent velocity Vx,Vy is estimated according to
[34].

Orientations of gradients and optical flow are computed for each pixel as:

φ = tan−1
(

Gt/
√

G2
x +G2

y

)
∈
[
−π

2
,

π

2

]
(9)

θ = tan−1 (Gy/Gx) ∈ [−π,π] (10)

ψ = tan−1 (Vy/Vx) ∈ [−π,π] (11)
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Fig. 5 Three dimensional region at the spatio-temporal interest point corresponding to a swinging
arm.

where φ and the θ are quantized in four and eight bins, respectively.
The local descriptor obtained by concatenating φ and θ histograms (H3DGrad)

has therefore size 3× 3× 2× (8 + 4) = 216. There is no need to re-orient the 3D
neighborhood, since rotational invariance, typically required in object detection and
recognition, is not desirable in the action classification context. This approach is
much simpler to compute than those proposed in [46] and [24]. In particular, in [46]
the histogram is normalized by the solid angle value to avoid distortions due to the
polar coordinate representation (instead of quantizing separately the two orienta-
tions as in our approach), moreover the size of the descriptor is 2048; in [24] the 3D
gradient vector is projected on the faces of a platonic solid. In this latter approach
requires additional parameter tuning, to optimize the selection of the solid used for
the histogram computation and whether to consider the orientations of its faces or
not. Differently from [28] our 12-bin H3DGrad descriptor models the dynamic ap-
pearance of the three-dimensional region used for its computation, instead of being
a 4-bin 2D histogram cumulated over time. A comparison between our H3DGrad
descriptor and the other HOG features (i.e. [24, 28, 46]) is reported in Table 1, in
terms of both accuracy and feature computation time.

The ψ is quantized in eight bins with an extra “no-motion” bin added to improve
performance. The local descriptor of ψ (HOF) has size 3× 3× 2× (8 + 1) = 162.
Histograms of φ , θ and ψ are respectively derived by weighting pixel contributions

respectively with the gradient magnitude MG =
√

G2
x +G2

y +G2
t (for φ and θ ), and

the optic flow magnitude MO =
√

V 2
x +V 2

y (for ψ).
In order to obtain an effective codebook for human actions these two descriptors

can be combined according to either early or late fusion. In the former case the two
descriptors are first concatenated and the combined descriptor is hence used for the
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Descriptor KTH Weizmann Time (ms)
H3DGrad 90.38 92.30 1
Kläser et al. [24] 91.40 84.30 2
Laptev et al. [28] 81.60 - 12
Scovanner et al. [46] - 82.60 419

Table 1 Comparison of accuracy and efficiency of our H3DGrad with other gradient based de-
scriptors on KTH and Weizmann datasets. Computation time for a single descriptor measured on a
2.66GHz Intel Xeon with 12 GB RAM; H3DGrad, [24] and [28] are C++ implementations while
[46] is a MATLAB implementation.

definition of the human action codebook. In the latter a codebook is obtained from
each descriptor separately; then the histograms of codewords are concatenated to
form the representation (see Fig. 6).

Codebooks

…

… …

Codebook

H3DGrad+HOF

H3DGrad

HOF

H(w)

STPatch

STPatch

Descriptor

Descriptors

Action Representation

Action Representation

H(w)

Fig. 6 Two fusion strategies: early-fusion (at the descriptor level) and late-fusion (at the codebook
level).

Fig. 7 shows the classification accuracy measured with the KTH dataset, using
codebooks based on the H3DGrad descriptor (a), HOF descriptor (b), and early
(c) and late fusion (d), with 4000 codewords. Each action, is represented by an
histogram H of codewords w obtained according to k-means clustering with hard
assignment:
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H(w) =
1
n

n

∑
i=1

1 if w = argmin
v∈V

(D(v, fi));

0 otherwise;
(12)

where n is the number of the spatio-temporal features, fi is the i-th spatio-temporal
feature, and D(v, fi) is the Euclidean distance between the codeword v of the vocab-
ulary V and fi.

We present in Table 2 the average accuracy obtained by H3DGrad and HOF
respectively, and by the early and late fusion. From the figures, it appears clearly
that late fusion provides the best performance. This can be explained with the fact
that H3DGrad and HOF descriptors have quite complementary roles (for example
the boxing action is better recognized when using H3DGrad descriptor while hand-
clapping action is better recognized by HOF, as shown in Fig. 7 (a),(b)). Late fusion
improves recognition performance for all the classes except one. A similar behavior
was observed with the Weizmann dataset, although in this case the improvement
was not so significant mainly due to the limited size and intra-class variability of the
dataset (see Table 2).

Descriptor KTH Weizmann
H3DGrad 90.38 92.30
HOF 88.04 89.74
H3DGrad + HOF (early fusion) 91.09 92.38
H3DGrad + HOF (late fusion) 92.10 92.41

Table 2 Average class accuracy of our descriptors, alone and combined, on the KTH and Weiz-
mann datasets.

4 Action Representation and Classification

In order to improve with respect to k-means and to account for the high variability
of human actions in terms of appearance or motion we used radius-based clustering
for codebook formation.

Fig. 8 shows the codeword frequency of radius-based clustering and k-means
with hard quantization on the KTH dataset. It is interesting to note that with k-
means most of the codewords have similar probability of occurrence, so making it
difficult to identify a set of words that have at the same time high discrimination ca-
pability and good probability of occurrence. In contrast radius-based shows a much
less uniform frequency distribution. Interestingly, with radius-based clustering, the
codeword distribution of the human action vocabulary is similar to the Zipf’s law for
textual corpuses. It seems therefore reasonable to assume that codewords at inter-
mediate frequencies are the most informative also for human action classification,
and the best candidates for the formation of the codebook.
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(a) H3DGrad (b) HOF

(c) H3DGrad + HOF (early) (d) H3DGrad + HOF (late)

Fig. 7 Classification accuracy on the KTH dataset using k-means clustering, hard assignment and
different descriptors combination strategies (i.e. early or late fusion).

Due to the high dimensionality of the descriptor, codebooks for human actions
usually have cluster centers that are spread in the feature space, so that two or more
codewords are equally relevant for a feature point (codeword uncertainty); more-
over cluster centers are often too far from feature points so that they are not anymore
representative (codeword plausibility). With radius-based clustering, codeword un-
certainty is critical because it frequently happens that feature points are close to the
codewords boundaries [17]. Instead, codeword plausibility is naturally relaxed due
to the fact that clusters are more uniformly distributed in the feature space. To re-
duce the uncertainty in codeword assignment, we therefore performed radius-based
clustering with soft assignment by Gaussian kernel density estimation smoothing.
In this case, the histogram H is computed as:

H(w) =
1
n

n

∑
i=1

Kσ (w, fi)

∑
|V |
j=1 Kσ (v j, fi)

(13)
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Fig. 8 Log-log plots of codeword frequency using k-means and radius-based clustering with hard
assignment. Bold lines indicate regions where the average cluster precision [37] is below 0.53.
The dotted diagonal line represents the Zipfian distribution. Two sample clusters are shown at near
frequencies, respectively obtained with radius-based clustering (A) (most of the features in the
cluster represent spatio-temporal patches of the same action) and with k-means (B) (features in
the cluster represent patches of several actions). Patches of actions have different colors: boxing
(cyan), hand-waving (magenta), hand-clapping (yellow), running (green), walking (red), jogging
(blue).

where Kσ is the Gaussian kernel: Kσ (·, ·) = 1√
2πσ

e(− d(·,·)2

2σ2 ) being σ the scale param-
eter tuned on the training set, and d(·, ·) is the Euclidean distance.

Fig. 9 compares the classification accuracy with codebooks obtained with k-
means clustering with both hard and soft assignment, and radius-based clustering
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with soft assignment, respectively for the KTH and Weizmann dataset. The plots
have been obtained by progressively adding less frequent codewords to the code-
books (respectively up to 4000 and 1000 codewords for the two datasets). The per-
formance of k-means is improved by the use of soft assignment. With a small num-
ber of words radius-based clustering with soft assignment has lower performance
than k-means due to the fact that the codewords used have higher frequency than
those used by k-means (see Fig. 8). As the number of codewords in the codebook
increases, radius-based clustering outperforms k-means, whether with hard or soft
assignment. This reflects the fact that in this case radius-based clustering permits
to have also sparse regions being represented in the codebook. Besides, soft assign-
ment helps to reduce uncertainty in the dense regions. Fig. 10 shows the confusion
matrix for different human actions on KTH and Weizmann datasets with radius-
based soft assignment. The average accuracy is respectively 92.66% and 95.41%
for the two datasets.
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Fig. 9 Classification accuracy on KTH (top) and Weizmann (bottom) datasets with codebooks
created with k-means with hard assignment, k-means with soft assignment and radius-based with
soft assignment.
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Fig. 10 Classification accuracy on KTH (left) and Weizmann (right) datasets using radius-based
clustering with soft assignment.

5 Experimental Results

We have assessed our approach for categorization of human actions in different
conditions. Particularly, it has been tested on the KTH and Weizmann datasets that
show staged actions performed by an individual in a constrained non-cluttered en-
vironment. Moreover, in order to have a more complete assessment of the per-
formance of the proposed solution even in real world scenes with high variabil-
ity and unconstrained videos, we also carried out experiments on the Hollywood2
and MICC-UNIFI Surveillance datasets. This latter, made publicly available at
www.openvisor.org [53], includes real world video surveillance sequences contain-
ing actions performed by individuals with cluttering and varying filming conditions.
Experiments were performed using non-linear SVMs with the χ2 kernel [62].

5.1 Experiments on KTH and Weizmann datasets

The KTH dataset, currently the most common dataset used for the evaluations of
action recognition methods [54], contains 2391 short video sequences showing
six basic actions: walking, running, jogging, hand-clapping, hand-waving, boxing.
They are performed by 25 actors under four different scenarios with illumination,
appearance and scale changes. They have been filmed with a hand-held camera
at 160× 120 pixel resolution. The Weizmann dataset contains 93 short video se-
quences showing nine different persons, each performing ten actions: run, walk,
skip, jumping-jack, jump-forward-on-two-legs, jump-in-place-on-two-legs, gallop-
sideways, wave-two-hands, wave-one-hand and bend. They have been filmed with
a fixed camera, at 180×144 pixel resolution, under the same lighting condition.
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(a) Walking

(b) Running

(c) Pickup object

(d) Enter car

(e) Enter car (from a different view point)

(f) Exit car

(g) Handshake

(h) Give object

Fig. 11 Sample frames of sequences from the MICC-UNIFI Surveillance dataset.
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Table 3 reports the average accuracy of our method in comparison with the most
notable research results published in the literature. The performance figures reported
are those published in their respective papers. For a fair comparison, our experi-
ments have been performed with the setup suggested by the creators of the KTH
and Weizmann datasets [45, 18], that has been used in [61, 31, 51, 16, 44, 28, 57,
46, 24, 56, 45, 54]. In particular, with the KTH dataset, SVM classifiers have been
trained on sequences of 16 actors and performance was evaluated for the sequences
of the remaining 9 actors according to 5-fold cross-validation. With the Weizmann
dataset SVM classifiers have been trained on the videos of 8 actors and tested on the
one remaining, following leave-one-out cross-validation.

While showing the best performance, our solution has also the nice property that
it does not require any adaptation to the context under observation. Instead other so-
lutions require some tuning of the descriptor to the specific context. Namely, Laptev
et al. [28] perform different spatio-temporal sampling of video frames and define
a set of descriptors; hence they represent each action with the best combination
of sampling and descriptors; Kläser et al. [24] use a parameterized 3D gradient de-
scriptor; parameter values are optimized for the dataset used; Liu et al. [31] use both
local and global descriptors and select the best combination of them according to an
optimization procedure; Scovanner et al. [46] optimize the codebook by associating
co-occurrent visual words.

Other researchers have claimed higher performance on the KTH dataset: 93.17%
Bregonzio et al. [7]; 94.2% Liu and Shah [33]; 93.43% Lin et al. [30]; 95.83%
Chen et al. [10]. However, these results were obtained with a Leave-One-Out Cross-
Validation setting that uses more training data and therefore are not directly compa-
rable. For the sake of fairness, they have not been included in Table 3. An exhaustive
list of the different experimental setups and results has been recently published by
Gao et al. [16].

5.2 Experiments on MICC-UNIFI Surveillance dataset

The MICC-UNIFI Surveillance dataset is composed by 175 real world video se-
quences of human actions with durations ranging from 3 to 20 seconds. The videos
have been taken from wall mounted Sony SNC RZ30 cameras at 640× 480 pixel
resolution, in a parking lot. The scenes are captured from different viewpoints, at
different degrees of zooming, with different shadowing and unpredictable occlu-
sions, at different duration, speed and illumination conditions. Eight subjects per-
form seven everyday actions: walking, running, pickup object, enter car, exit car,
handshake and give object. A few examples are shown in Fig. 11. We followed a re-
peated stratified random sub-sampling validation, using 80% of the videos of each
class as training set. Experiments were performed using a 2000 codeword codebook.
The confusion matrix of classification accuracy is reported in Fig. 12: the average
accuracy is 86.28%. Most of the misclassifications observed with our method oc-
curred with the give object and handshake actions. They are both characterized by
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Method KTH Weizmann Features Optimizations
Our method 92.66 95.41 H3DGrad + HOF -
Yu et al. [61] 91.8 HoG + HOF -
Wang et al. [54] 92.1 - HOF -
Gao et al. [16] 91.14 - MoSIFT -
Sun et al. [51] 89.8 90.3 2D SIFT + 3D SIFT + -

Zernike
Rapantzikos et al. [44] 88.3 - PCA-Gradient -
Laptev et al. [28] 91.8 - HoG + HOF codebook,

sampling
Dollár et al. [13] 81.2 - PCA-Gradient -
Wong and Cipolla [57] 86.62 - PCA-Gradient -
Scovanner et al. [46] - 82.6 3D SIFT codebook
Niebles et al. [41] 83.33 90 PCA-Gradient -
Liu et al. [31] - 90.4 PCA-Gradient + codebook

Spin images
Kläser et al. [24] 91.4 84.3 3D HoG descriptor
Willems et al. [56] 84.26 - 3D SURF -
Schüldt et al. [45] 71.7 - ST-Jets -

Table 3 Comparison of classification accuracy with some state-of-the-art methods on KTH and
Weizmann datasets.

a very fast motion pattern and small motion of the human limbs. Fig. 13 reports
sample sequences of these actions with evidence of details. In Table 4, we report a
comparison of our method with other codebook creation approaches (k-means with
hard and soft assignment) and with other state-of-the-art descriptors that publicly
make their implementation available: MoSIFT2 [16] and Dollár et al. 3 [13]. The
results show that the proposed method outperforms the other approaches, and that
the proposed codebook creation approach performs better than the typical k-means
clustering whether with hard and soft assignment.

Method MICC-Surveillance
Our method 86.28
k-means + soft 83.74
k-means 82.90
Dollár et al. [13] 72.50
MoSIFT [16] 75.88

Table 4 Comparison of classification accuracy on MICC-Surveillance dataset with our method,
k-means with soft assignment, k-means with hard assignment, and with the descriptors proposed
in [13] and [16].

2 http://lastlaugh.inf.cs.cmu.edu/libscom/downloads.htm
3 http://vision.ucsd.edu/%7epdollar/research.html
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Fig. 12 Classification accuracy on the MICC-Surveillance dataset using radius-based clustering
with soft assignment.

5.3 Experiments on Hollywood2 dataset

The Hollywood2 dataset [36] is composed by sequences extracted from DVDs of
69 Hollywood movies, showing 12 different actions in realistic and challenging set-
tings: answer phone, drive car, eat, fight person, get out of car, handshake, hug
person, kiss, run, sit down, sit up, stand up. We performed our experiments with
the same setup of [28, 54] using the “clean” training dataset, containing scenes that
have been manually verified. This dataset is composed by 1707 sequences divided
in training set (823) and test set (884), with different frame size and frame rate; train
and test set videos have been selected from different movies. To be comparable with
other experimental results the performance has been evaluated computing the aver-
age precision (AP) for each class and reporting also the mean AP over all classes.
Codebooks have been created using 4000 codewords, as in [54]. We have compared
our codebook creation approach with k-means clustering using both soft and hard
assignments, and with an implementation of the method proposed in [28] using the
provided descriptor and detector4. Results are reported in Table 5, showing that the
proposed method outperforms the other approaches in the majority of action classes
and in terms of mean AP.

4 http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
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Frame 2 Frame 4 Frame 7 Frame 10

(a)

Frame 7 Frame 10 Frame 13 Frame 16

(b)

Fig. 13 Sample frames of give object (a) and handshake (b) action sequences in the MICC-
Surveillance dataset. For each sequence the second row shows the detail indicated in red in the
first row.

5.4 Experiments on Reducing the Codebook Size

Large codebooks, although being able to exploit the most informative codewords
as illustrated in Fig. 8, imply high time and space complexity. Reduction of code-
book size with preservation of descriptive capability is therefore desirable. Linear
dimensionality reduction techniques such as Principal Component Analysis or La-
tent Semantic Analysis, are not suited to this end because they are not able to handle
high order correlations between codewords that are present in human action repre-
sentation [35]. We have therefore applied nonlinear dimensionality reduction with
Deep Belief Networks (DBNs) [20, 35]. A DBN is composed of several Restricted
Boltzmann Machines (RBM) building blocks that encode levels of non-linear rela-
tionships of the input vectors. It is pre-trained by learning layers incrementally using
contrastive divergence [9]. After pre-training, the auto-encoder is built by reversing
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Action k-means k-means + Our method Laptev et al.
soft [28]

Answer phone 0.178 0.186 0.195 0.134
Drive car 0.864 0.865 0.863 0.861
Eat 0.552 0.564 0.564 0.596
Fight person 0.564 0.557 0.578 0.643
Get put of car 0.362 0.364 0.362 0.297
Handshake 0.142 0.143 0.167 0.179
Hug person 0.251 0.257 0.275 0.345
Kiss 0.494 0.510 0.503 0.467
Run 0.631 0.636 0.659 0.619
Sit down 0.483 0.493 0.509 0.505
Sit up 0.215 0.231 0.227 0.143
Stand up 0.511 0.513 0.514 0.485

mean AP 0.437 0.443 0.451 0.439

Table 5 Comparison of per-class AP performance on Hollywood2 dataset with codebooks cre-
ated with our method, k-means with soft assignment, k-means with hard assignment and with the
detector+descriptor proposed by Laptev et al. [28].

the network and connecting the top layer of the network to the bottom layer of its
reversed version. The auto-encoder is then used to fine-tune the network using a
standard back-propagation algorithm.

Since the action representation H(w) can be considered as a coarse probability
density estimation of the features of a human action (see equation 13), given a set of
space-time features F = { f1, f2, . . . , fn}, the value of the i-th bin of H can be con-
sidered as the probability that a space-time descriptor f ∈F is represented by the
codeword wi. This probability can hence be used as an input for an RBM according
to [21].

Fig. 14 reports plots of accuracy measured at different codebook sizes, with PCA,
LSA and DBN codebook reduction and radius-based clustering with soft assign-
ment, on the KTH dataset. Codebook reduction was applied to a 4000 codewords
codebook. The dimension of the input layer is equal to the size of the uncompressed
codebook and the dimension of the output layer is the compressed codebook size.
Each hidden layer is one half the dimension of its input layer. The network depth
ranges between five and eight depending on the size of the output codebook. The
performance of our approach outperforms that of the method recently proposed in
[25], especially for the smaller codebook sizes.

Fig. 15 reports plots of mean computation times for a KTH video sequence as a
function of codebook size for radius-based clustering with soft assignment. The ac-
curacy values of Fig. 14 have been reported on the plot for the sake of completeness.
It can be noticed that strong codebook size reductions result into time improvements
of more than two orders of magnitude. A compressed codebook with 100 codewords
scores 89.57% recognition accuracy with respect to 92.66% of a 4000 codewords
codebook.
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Fig. 14 Classification accuracy on KTH dataset at different codebook sizes, with different code-
book reduction techniques, for radius-based clustering with soft assignment.

Fig. 16 shows that DBN-compressed codebooks on the one hand provide good
accuracy even with very small codebook sizes, and on the other hand make radius-
based clustering still competitive with respect to k-means clustering with 100 or less
codewords.

Table 6 reports a comparison in terms of classification accuracy at different code-
book sizes with DBN, PCA and LSA on the MICC-UNIFI surveillance dataset.
Codebook reduction was applied to the 2000 codeword codebook obtained with
radius-based clustering and soft assignment in the previous classification experi-
ment. The smaller number of available training videos, with respect to KTH, is
responsible for the reduction in classification accuracy, although the DBNs largely
outperform the other methods. This experiment shows another advantage of the use
of DBNs over PCA and LSA when the number of sequences available for train-
ing is relatively small, i.e. the possibility to create larger dictionaries that usually
yield higher classification accuracy although maintaining a speed improvement of
an order of magnitude. Table 7 reports a comparison of MAP performance obtained
using compressed codebooks created with DBN, PCA and LSA on the Hollywood2
dataset. Codebook reduction was applied to the 4000 codeword codebook obtained
with radius-based clustering and soft assignment used in the classification experi-
ment. Despite the challenging dataset, the performance is still comparable with that
obtained with full sized codebooks by several approaches reported in [54].

Codebook size 6 50 100 250 500

DBN 0.386 0.397 0.412 0.431 0.474
PCA 0.333 0.378 0.405 - -
LSA 0.330 0.346 0.335 - -

Table 6 Classification accuracy on MICC-UNIFI dataset at different codebook sizes, with differ-
ent codebook reduction techniques, for radius-based clustering with soft assignment. Using PCA
and LSA it is not possible to create codebooks larger than the number of training videos; using
DBNs this issue is not present.
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Codebook size 6 50 100 250 500

DBN 0.281 0.372 0.383 0.375 0.374
PCA 0.191 0.323 0.329 0.337 0.338
LSA 0.204 0.322 0.316 0.311 0.314

Table 7 Classification of MAP performance on Hollywood2 dataset at different codebook sizes,
with different codebook reduction techniques, for radius-based clustering with soft assignment.
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Fig. 15 Mean computation times for a KTH video sequence at different codebook sizes with
radius-based clustering and DBNs. The numbers associated to the markers indicate the classifi-
cation accuracy.
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Fig. 16 Classification accuracy as a function of codebook size, for DBN-compressed and uncom-
pressed codebooks. Radius-based clustering with soft assignment is compared with k-means clus-
tering with hard assignment.
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5.5 Tracker Evaluation and Experiments on Recognizing Multiple
Actions

These experiments have been perfomed on a subset of the MICC-UNIFI Surveil-
lance dataset. First of all, we have evaluated our tracking module quality by measur-
ing multiple object tracking accuracy (MOTA) as defined by Bernardin and Stiefel-
hagen [5]. MOTA is an intuitive performance metric for multiple object trackers
and measures a tracker performance at keeping accurate trajectories. For each frame
processed a tracker should produce a set of object hypotheses, each of which should
ideally correspond to a real visible object. In order to compute MOTA a consistent
hypothesis-object mapping over time must be produced; the complete procedure to
obtain this mapping is specified in detail in [5]. MOTA takes into account all pos-
sible errors that a multi-object tracker makes: false positives, missed objects and
identity switches. False positives ( f p) arise when, for example, the tracker is ini-
tiated on a false detection or when an object is missed and consequently a wrong
pattern replaces the correct object hypothesis. Misses or false negatives ( f n) arise
whenever an object is not mapped to any of the hypotheses proposed by the tracker;
finally identity switches (sw) happen whenever an object hypothesis is mapped to
the wrong object, for example after an occlusion or when an object tracker fails
and another tracker is reinitialized. Errors are normalized by the number of objects
present (gt) with respect to the whole sequence.

MOTA is defined as follows:

MOTA = 1− ∑t f pt + f nt + swt

∑t gtt
(14)

We represent persons as bounding boxes and we consider a mapping correct if
O∩H
O∪H ≥ 0.5, where O and H are the areas of the object and the hypothesis bound-
ing boxes mapped. We measured MOTA for all five sequences in which our final
recognition experiments were performed and another sequence. The last sequence
is recorded with a PTZ camera, panning tilting and zooming on targets and targets
are instructed to produce overlapping trajectories in order to create difficult situa-
tions for a multiple object tracker. In the first five test sequences most of the errors
are caused by false alarms of the pedestrian detector that cause instantiation of track-
ers; in the classification stage this empty tracks can be filtered since they usually do
not contain enough detected space-time interest points. In the last sequence most
of the errors are due to identity switches since target maneuvers are more complex.
MOTA is quite satisfying in all sequences, considering also that, in order to attain
real-time performance, our appearance model is weak and no online classifier is
used to perform data association or learn the template.

We have further evaluated the performance of our approach on five complex
video sequences containing multiple actions performed concurrently (two exam-
ples are shown in Fig. 17). These sequences have different durations ranging from a
minimum of ∼ 120 to a maximum of ∼ 300 frames. Our method has been applied
to recognize and localize two basic actions: walking and running. As training set
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Seq. FPR FNR SWITCH MOTA

1 27.92 2.92 0 68.35
2 38.56 12.40 2 49.82
3 13.15 32.16 0 54.67
4 23.65 9.18 0 67.20
5 15.02 27.48 0 57.74
6 14.59 3.82 52 79.38

Table 8 Multiple object tracking accuracy (MOTA) together with false positive rate (FPR), false
negative rate (FPR) and amount of identity switches (SWITCH).

Seq. Detected Filtered WGT RGT OGT Acc
1 8 5 3 2 0 4/5
2 7 6 3 2 1 5/6
3 11 5 2 2 1 4/5
4 8 6 2 3 1 4/6
5 8 5 3 2 0 4/5

21/27

Table 9 System performance on complex video sequences: for each sequence the number of
tracks, action ground-truth (WGT,RGT ,OGT), and classification accuracy are reported.

Action Precision Recall
Walking 73% 85%
Running 77% 71%

Table 10 Precision and recall for the running and walking actions.

we used the videos containing a single person performing the same action multiple
times.

Table 9 shows the performance of our approach on surveillance videos. For each
sequence we report the detected tracks identified from our person detector and
tracker. The tracks that contain less than 30 interest points are discarded and the fil-
tered tracks are then used to perform action classification. These tracks are manually
annotated in walking, running and other action (reported in table 9 in the columns
WGT, RGT,OGT respectively). Details of classification accuracy are shown. We note
that 21/27 tracks are recognized correctly. The performance of action classification
is evaluated in terms of two standard metrics i.e. precision and recall, defined as:

precision =
# of correctly predicted actions

# of predicted actions
, (15)

recall =
# of correctly predicted actions

# of ground-truth actions
. (16)

Precision and recall performance of the action recognition, also shown in table 10,
are mostly affected by mistaken classification of the tracks that contain the “other”
action, since only one track that contains a walking action was classified as running
action.
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Fig. 17 Example of two sequences from our multiple-action surveillance dataset. In the first se-
quence (seq. 3) our actors perform a pickpocketing event. In the second sequence (seq. 5) a snatch
is performed.

6 Conclusions

In this chapter we have presented a novel method for human action categorization
that exploits a new descriptor for spatio-temporal interest points that combines ap-
pearance (3D gradient descriptor) and motion (optic flow descriptor), and effective
codebook creation based on radius-based clustering and a soft assignment of fea-
ture descriptors to codewords. The approach was validated on KTH and Weizmann
datasets, on the Hollywood2 dataset and on a new surveillance dataset that contain
unconstrained video sequences that include more realistic and complex actions. Re-
sults outperform the state-of-the-art with no parameter tuning. We have also shown
that a strong reduction of computation time can be obtained by applying codebook
size reduction with Deep Belief Networks, with small reduction of classification
performance.
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