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etrieval by content from video dig-

ital libraries requires annotation of

media content at both syntactic

and semantic levels. As multimedia

archives become increasingly large—some

broadcasting archives contain millions of hours

of footage—the need for more sophisticated

annotation and retrieval systems becomes in-

creasingly acute. Keyword-based tagging sys-

tems, such as those used by Flickr or YouTube,

are simple to use but lack a common vocabulary

and tag relationships, reducing their retrieval ef-

fectiveness. Semantic Web technologies promise

to make managing the metadata associated with

these archives much easier. In the Semantic

Web paradigm, ontologies become the formal

tool to express concepts, their attributes, and

the relationships between concepts in the do-

main of interest.

Indeed, ontologies can play a fundamental

role in efficiently annotating content in digital

video libraries because they allow association

between concepts and visual data.1,2 For se-

mantic annotation of visual data, there are sev-

eral existing and useful ontologies, including

those defined by the Dublin Core Metadata

Initiative (see http://dublincore.org), by TV

Anytime (see http://www.tv-anytime.org), and

by the Large Scale Concept Ontology for Multi-

media initiative.3 In these cases, the ontologies

include a set of linguistic terms and definitions

that formally describe the application domain

through concepts, concept properties, and

relations, all according to some particular view.

However, linking ontology concepts to vi-

sual data poses several problems that are still

far from being solved. One key problem is

how to obtain a complete expression of the in-

formation content of visual data. In many

cases, such as for complex scenes or events,

using linguistic concepts alone is inadequate

for a complete expression of the semantics

embedded in visual data. According to studies

in cognitive psychology, the basis of the cogni-

tion process is the different modalities of men-

tal representations, such as symbols, images,

and schemata.4 Therefore, both perceptual pat-

terns and semantic concepts are necessary for a

complete expression of visual data. Another

key problem is the fact that the visual manifes-

tations of objects and events can change over

time, which suggests that the association

between visual data and high-level concepts

should have some kind of built-in temporal

evolution.

In this article, we present a framework for

annotating video streams with an ontology

model designed to address these problems.

The Dynamic Pictorially Enriched Ontology

model includes not only linguistic concepts,

but also visual prototypes to account for visual

data’s different modalities in which visual data

can manifest. They are obtained by clustering

the instances of visual data that are observed,

according to distinguishing perceptual fea-

tures. The model manages temporal modi-

fication of visual data through a clustering

mechanism that can recluster instances al-

ready observed and redefine the visual proto-

types. We use the Web Ontology Language

to model both domain concepts and visual

prototypes, and the Semantic Web Rule Lan-

guage (SWRL) to enhance, through reasoning,

the results of the classification and derive new

semantic annotations.

The Many Faces of Semantics

This article presents

a framework for

automatic semantic

annotation of video

streams with an

ontology that

includes concepts

expressed using

linguistic terms and

visual data.
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Automatic video annotation framework

Our framework employs the Dynamic Picto-

rially Enriched Ontology model to perform

video annotation and uses cluster updating to

support temporal evolution of the visual proto-

types. In this model, the ontology contains the

linguistic domain concepts, their relationships,

and visual instances. Concepts selected for vi-

sual instances are those that change in shape,

appearance, andmotion in their spatiotemporal

pattern. In the ontologies used in the experi-

ments, these concepts consist of sport high-

lights such as ‘‘shot on goal’’ and ‘‘pit stop,’’

or views such as ‘‘long range’’ and ‘‘close up.’’

Visual instances associated with the schema

concepts include object identifier, visual des-

criptors, time label, and link to the raw

data. We create these instances as the result of

the matching between the descriptors of the

raw visual data and the descriptors of one

reference instance in the ontology.We use clus-

tering to group instances that have some

similarity in their visual or spatiotemporal pat-

terns. In general, there are several clusters for

each concept. Each cluster roughly corresponds

to one concept modality in which that concept

manifests itself in reality. To reduce the cost

of descriptor matching, we define a visual

prototype for each cluster to represent all the

instances in the cluster. The median element

in each cluster becomes the visual prototype,

which is initially created using a training set

of annotated data.

A special cluster, called the unknown con-

cept cluster, includes the instances that have

not been assigned yet to a cluster. Because vi-

sual instances might have a large number of

modes in which they appear, our system con-

siders any new instance to be new knowledge

for the ontology. Every time a new instance is

associated with a concept, the system updates

all the clusters of that concept along with the

unknown concept cluster. In this way, we can

assign previously labeled unknown instances

to some cluster or create new clusters as a

result of the new instance. Ultimately, this

process permits the system to effectively repre-

sent the instances’ various appearances and

motion patterns and provides a form of tempo-

ral evolution for the knowledge in the ontol-

ogy. Figure 1 shows an example of clustering

updates.

Visual instances are obtained by video

segmentation and feature extraction. A shot-

detection algorithm, called Linear Transition De-

tection (LTD), performs the video segmentation.

Visual prototype

(a)

(b)

(C)

Visual prototype

Visual prototype

Before After

New visual prototype

New visual prototype

New visual prototype

Old visual prototype

Old visual prototype

Visual prototype

New shot

New shot

New shot
Figure 1. When the

system assigns a new

shot to a concept, it

updates all the clusters

of the concept. Some

possible outcomes of

the update include

(a) the visual prototype

of the cluster remains

the same, (b) a new

prototype is selected,

and (c) the cluster is

split and two new

visual prototypes are

selected.
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By approximating a linear transition model,

LTD is quite robust when it comes to detecting

cuts, dissolves, and fades.5 The descriptors

extracted from video shots are of two types:

low-level features and medium-level features.

Examples of low-level features include color his-

tograms or edge maps related to concepts used

in different domains, such as scene setting or

shot type. Examples of medium-level features

include those that indicate a particular applica-

tion domain, such as a playfield position in

sport videos, or a specific entity, such as a face

obtained from face-detection software. We use

literals to represent the sequences of the de-

scriptor values (computed from each frame of

the shot) to account for different shot lengths

and temporal order.

To test the system’s capability, we used For-

mula 1 and soccer videos. Figure 2 shows part

of the schema of the soccer ontology, with lin-

guistic concepts and visual instances. For each

cluster of visual instances, the has_visual_

instance property allows linking to visual

instances, while the has_visual_ prototype prop-

erty identifies the cluster prototype. In addi-

tion, the annotation and cluster-updating

processes are schematized. The annotation pro-

cess entails matching observed data instances

with visual prototypes and consequent high-

level concept association, while the cluster-

updating process entails determining reclustering

of the ontology’s clusters from the observed data

instances.

The system uses different clustering meth-

ods. For concepts where temporal ordering of

descriptors is not relevant—typically because

they refer to scene views such as close-up

or wide-angle—we used Complete Link

Figure 2. The video

annotation framework

with Dynamic

Pictorially Enriched

Ontologies showing a

partial schema of the

soccer video ontology

with linguistic concepts

and visual instances;

instance clusters with

visual prototypes;

annotation that

matches the observed

instance with visual

prototypes; and cluster

updating.
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hierarchical clustering. We used the Mallow’s

distance d(Sx; Sy) as a measure of the dissimilar-

ity between the features vector of two shots S to

account for shots of different length. The

system assigns every shot to a different cluster,

then proceeds with an iterative grouping of

the two most similar clusters until it obtains a

single cluster that contains all the instances.

Each level of the hierarchy can be identified

by its number n of clusters. The process obtains

an optimal number ~n of clusters automatically

by maximizing a clustering score CSn. To this

end, we define the diameter D(Wi) of a cluster

Wi and the distance d(Wi; Wj) between two

clusters Wi and Wj as:

D(Wi) ¼ max
Sx;Sy2Wi

d(Sx, Sy)

d(Wi,Wj) ¼ min
Sx2Wi;Sy2Wj

d(Sx, Sy)

And we define the clustering score at level n as:

CSn ¼ min (D1 � Dn, Dn)

where

Dn ¼ max
Wi2En D(Wi)

dn ¼ min
Wi;Wj2En;i6¼j d(Wi, Wj)

being En the set of clusters at level n.

For concepts where the temporal evolution

of descriptors is extremely relevant—for exam-

ple, in a soccer ‘‘shot on goal’’ action, where

player motion and play field zone values

are important elements in distinguishing one

action from the other—we used the Fuzzy

C-Means (FCM) clustering method and the

Needleman-Wunch distance. This distance

accounts for the fact that shots may have differ-

ent temporal length and also accounts for the

temporal order of the features. We obtain

the distance, the sum of all the normalized

Needleman-Wunch distances between the dis-

tinct components of the content descriptors,

as follows:

d(Sx, Sy) ¼
P

U NW(Usx ,Usy )

min (length(Sx), length(Sy))

where U is a vector obtained as the composi-

tion of the individual content descriptors of

the shot.6

Certain concepts occurring in a video can’t

be detected only from observing visual features.

In some cases, these concepts can be recognized

through analyzing the context and the content

of the preceding and following shots. For exam-

ple, in the soccer domain, some placed kicks

that are not recognized using visual features

can be recognized in that they are frequently

preceded by player close-ups or medium-view

shots. We can therefore define patterns that

use temporal relations between concepts to im-

prove shot annotation.

In our framework, we use rules to model

these patterns and rule-based reasoning to rec-

ognize them. Patterns can include conditions

on the occurrence of concepts, constraints on

the values of visual descriptors of concept

instances, and temporal relations between con-

cepts occurrences. We use SWRL to define the

rules that model these patterns. With respect

to Web Ontology Language axioms, SWRL per-

mits us to express rules explicitly through

if-then expressions, and provides built-in

mathematical, logical, string comparison, and

temporal operators, making it easier, even for

nonprogrammer domain experts, to define

and modify rules and rule constraints.7

Experimental results

We tested our annotation framework on the

Formula 1 and soccer domains to show its gen-

eral applicability and achievable performance

improvements. Table 1 (next page) lists the con-

cepts with visual prototypes from the two

domains, representing dynamic actions, high-

lights, and common views used to show an

overview of an event or its context. For the de-

scription of the visual content, we used low-

level features, namely color layout, scalable

color, edge histogram, and motion activity. For

the soccer domain, we added a few medium-

level features, namely the main camera motion

direction and intensity, the framed playfield

zone, and the number of visible players in the

upper and lower part of the playfield. We

described the ‘‘shot on goal’’ and ‘‘placed kick’’

highlights explicitly, considering the temporal

evolution of their visual features.

We conducted the first experiment to check

the performance of the video annotations,

dependant on the number of shot instances

in a training set used to create the visual proto-

types, for two sets of concepts: those that don’t

exploit any temporal information and those

that consider the temporal order of the visual

features observed. For the first set of concepts,

we used six distinct collections of video sequen-

ces extracted from the 2006 soccer world
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championship. The video collections contain

different games, athletes, stadiums, and edit

effects, and are different lengths. Each collec-

tion includes several concepts, such as wide-

angle view, long-range view, medium view,

spectators, team, and player close-up.

Table 2 lists the results of the experiment for

this set in terms of average precision and recall.

Initially, as listed in the first row in Table 2, we

presented 81 shots to the ontology (trained

with 25 shots annotated manually to create

the initial set of visual prototypes). The system

annotated 81 shots exploiting the initial set of

visual prototypes. We manually annotated the

concepts that were not already represented

(11 concepts altogether). We repeated this pro-

cess in several steps, with the addition of new

shots at every step. As we presented new shots

to the system, it updated the visual prototypes

in the ontology. At step five, we used 1,158

shots containing 19 concepts. The quality of an-

notation improved from rows two to five.

The second set of concepts includes ‘‘shot

on goal’’ and ‘‘placed kick’’ (rows six through

eight) There is a great deal of variety in the vi-

sual appearance of these concepts, making a

large number of prototypes necessary for effec-

tive annotation. Initially, we presented 68 shots

Table 1. List of concepts with visual prototypes used in the Formula 1 and soccer ontologies. Indentations indicate that a

concept is a specialization of another concept.

Domain Concept Description

Soccer Wide angle view Wide-angle view framed by the main camera

Soccer Wide angle midfield view Wide-angle view of the midfield area

Soccer Long-range view Long-range view focusing over middle area

Soccer Long-range view from goal post Long-range view as taken from the goal posts

Soccer Long-range view to the goal post Long-range view taking the goal post in the center

Soccer Narrow view Narrow-angle view as taken from handheld video camera

Soccer Medium view Players are fully displayed in the playfield

Soccer Medium view from the goal post Medium view as taken from the goal post

Soccer Medium view to the goal post Medium view of the goal post

Soccer Medium view next to the goal post Medium view where the goal post is lateral in the image

Soccer Players medium view Players view framed from a side camera near the playfield

Soccer Bench Coach and team staff view

Soccer Player close-up Players close-up view

Soccer Team View of the team

Soccer Team entrance View of the team entrance in the playfield

Soccer Team in the tunnel View of players taken in the tunnel before and after the game

Soccer Spectators View displaying supporters and cheering crowd

Soccer Advertisement View showing advertisement

Soccer Graphic effects View displaying any other elements such as computer graphics

Soccer Shot on goal Action where a player kicks the ball to the opponent’s goal post to score a goal

Soccer Placed kick Action including penalty, corner, and free kick near the goal post

Formula 1 Wide angle view Wide-angle view of the race track

Formula 1 Medium view Medium view of the track

Formula 1 Car close-up Car close-up view

Formula 1 Box staff Staff view

Formula 1 Spectators View displaying supporters and cheering crowd

Formula 1 Advertisement View showing advertisement

Formula 1 Car-camera driver view View of the driver from the camera car

Formula 1 Car-camera front view View of the front of the car from the camera car

Formula 1 Box pit stop View displaying a car and the team during the pit stop

Formula 1 Box car entry Action where a car is entering the box

Formula 1 Box car exit Action where a car is exiting from the box

Formula 1 Race start Action at the start of the race
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to the system ontology that we had manually

trained with 30 ‘‘shot on goal’’ and 20 ‘‘placed

kick’’ shots (row six). In each of the following

steps (row seven and eight), we used 50 addi-

tional shots for training. The experiment indi-

cates that increasing the training set for the

creation of the visual prototypes results in

improved performance. In particular, the im-

provement in recall is mainly due to the fact

that the number of shots classified as unknown

concept decreases as the number of visual pro-

totypes increases.

The second experiment highlights the capa-

bility of the Dynamic Pictorially Enriched

Ontologies model to capture the temporal evo-

lution of the visual prototypes. To this end, we

used the already annotated ‘‘placed kick’’ shots

used for training in the previous experiment.

Because they contain events filmed in the

years 2001, 2005, and 2006, we inserted them

into the ontology in three distinct steps so

the clusters could be updated at each stage

and the visual prototypes redefined. While

feeding the ontology with this data, we kept

track of the way in which the visual prototypes

changed.

In particular, at each step, we registered the

mean and variance of the shifts of the cluster

centers with respect to their position in the pre-

vious step, together with the mean radius of

each cluster and the number of clusters. In the

case of cluster splitting, we calculated the shift

of the original cluster center with respect to

the closest of the new cluster centers. Table 3

shows the evolution of these parameters for

each step. We calculated distances using the

Needleman-Wunch distance defined previ-

ously. Doing so provided evidence of the

different modes in which ‘‘placed kick’’ shots

have been shown on TV from 2001 to 2006.

The ‘‘placed kick’’ shots from 2005 shifted

the 2001 ‘‘placed kick’’ cluster centers, with

an increase of both the mean cluster radius

and the number of clusters. Adding the 2006

‘‘placed kick’’ shots resulted in an increase in

the number of visual prototypes, but a smaller

average shift of the cluster centers and a slight

decrease of the mean cluster radius. Indeed,

these shifts reflect the fact that camera shots

for soccer have changed considerably since

2005. The long phase of preparing for the kick

(placing the ball, waiting for the placement of

the opponents, and so forth) is now rarely

shown, and has been replaced by player close-

ups and medium views of the playfield, to dis-

play a faster and more dynamic scene.

In the third experiment, we measured the

annotation performance of the Dynamic Picto-

rially Enriched Ontologies model with respect

to the concepts defined for the domains in

Table 1. We performed tests on the same shots

from the first experiment. For each concept,

we indicated correct, miss, false, and un-

known classified shots, with display of the aver-

age precision and recall achieved. For the

Table 2. Evaluation of annotation performance.

Video

collection

Temporal feature

ordering

Number of

shots

Number of

concepts

Shots used for

ontology training

Average

precision

Average

recall

1 No 81 11 25 0.19 0.20

2 No 206 17 106 0.34 0.28

3 No 255 19 312 0.47 0.38

4 No 591 19 567 0.43 0.46

5 No 341 19 1158 0.55 0.52

6 Yes 68 2 50 0.43 0.27

7 Yes 68 2 100 0.53 0.40

8 Yes 68 2 150 0.62 0.60

Table 3. Dynamic evolution of ‘‘placed kick’’ visual prototypes (2001

to 2006).

Video

collection Years

Mean

shift

s2

shift

Mean

cluster

radius

Number

of visual

prototypes

1 2001 n/a n/a 3.6 4

2 2001, 2005 3.3 1.3 4.5 6

3 2001, 2005, 2006 1.0 1.7 4.4 8
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Formula 1 and soccer domains, Table 4 lists

the results. As the table illustrates, some con-

cepts are poorly represented mainly due to

the fact that they vary in appearance so

much. We found that most false detections

were caused by shots that have a narrow-angle

view and medium-view concepts. In these

cases, the system would need additional

semantic information to recognize the concept

properly.

The ‘‘shot on goal’’ concept performed well

in terms of precision and recall. The low recall

and large number of unknowns for the ‘‘placed

kick’’ concept were caused by the dataset

including shots filmed with different modal-

ities. The car-camera concepts had excellent

precision and recall because the shots could

be distinguished easily from the other con-

cepts. In addition, the ‘‘box car entry’’ and

‘‘box car exit’’ performed well because of the

motion feature, while the ‘‘box staff’’ and

‘‘box pit stop’’ shots were easily confused with

each other because of no unique motion

characterization.

In the fourth experiment, we provided some

evidence of the precision improvement and re-

call that is achievable with rule-based ontology

reasoning, even with the addition of few simple

rules. We performed the analysis for a few high-

lights of soccer and Formula 1 using rule-based

reasoning with the Jess reasoning engine. We

defined SWRL rule patterns for ‘‘placed kick,’’

Table 4. Annotation performance for the concepts defined in Table 1.

Domain Concept Correct Unknown Miss False Precision Recall

Soccer Wide-angle view 26 0 5 14 0.65 0.84

Soccer Wide-angle midfield view 1 0 2 3 0.25 0.33

Soccer Long-range view 12 4 9 9 0.57 0.48

Soccer Long-range view from goal post 4 0 5 1 0.80 0.44

Soccer Long-range view to the goal post 1 0 2 3 0.25 0.33

Soccer Narrow view 2 1 7 5 0.29 0.20

Soccer Medium view 26 2 11 18 0.59 0.66

Soccer Medium view from the goal post 1 0 3 3 0.25 0.25

Soccer Medium view to the goal post 6 1 2 5 0.54 0.67

Soccer Medium view next to the goal post 1 2 4 1 0.50 0.14

Soccer Players medium view 1 1 4 5 0.16 0.17

Soccer Bench 7 1 14 3 0.70 0.32

Soccer Player close-up 72 5 27 20 0.78 0.69

Soccer Team 10 0 4 1 0.90 0.71

Soccer Team entrance 1 0 3 1 0.50 0.25

Soccer Team in the tunnel 1 1 1 4 0.20 0.33

Soccer Spectators 15 0 3 12 0.55 0.83

Soccer Advertisement 5 0 1 0 1 0.83

Soccer Graphic effects 22 1 1 0 1 0.92

Soccer Shot on goal 20 5 5 6 0.77 0.67

Soccer Placed kick 11 9 1 12 0.48 0.52

Formula 1 Wide angle view 53 2 33 10 0.84 0.60

Formula 1 Medium view 47 4 31 46 0.50 0.57

Formula 1 Car close-up 76 4 18 54 0.58 0.77

Formula 1 Box staff 23 0 36 13 0.64 0.39

Formula 1 Spectators 41 0 43 13 0.76 0.49

Formula 1 Advertisement 96 3 4 8 0.92 0.93

Formula 1 Car-camera driver view 97 3 2 3 0.97 0.95

Formula 1 Car-camera front view 7 2 0 1 0.87 0.77

Formula 1 Box pit stop 57 0 44 29 0.66 0.56

Formula 1 Box car entry 78 0 21 20 0.80 0.79

Formula 1 Box car exit 81 3 19 54 0.60 0.79
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‘‘shot on goal,’’ ‘‘box car exit,’’ and ‘‘race start’’

as follows:

� Placed kick: IF player close-up shots occur

before an unknown concept shot, with a

few seconds of fixed camera, within a time

interval between 40 and 50 seconds THEN

the unknown concept shot is classified as a

‘‘placed kick’’ shot.

� Shot on goal: IF player close-up shots AND

medium view to the goal post occur after

an unknown concept shot, with a few sec-

onds of goal post view, within a time inter-

val between 10 and 20 seconds THEN the

unknown concept shot is classified as ‘‘shot

on goal’’ shot.

� Box car exit: IF box pitstop OR box staff

shots occur before an unknown concept

shot, with a few seconds of motion activity

AND wide angle OR medium view follow

within a time interval between 7 and 20 sec-

onds THEN the unknown concept shot is

classified as ‘‘box car exit’’ shot.

� Race start: IF camera-car front view AND car

close-up occur before medium view, without

motion activity, within a time interval be-

tween 50 and 70 seconds THEN the medium

view shot is classified as ‘‘race start’’ shot.

Figure 3 shows an example with the SWRL

code for the ‘‘placed kick’’ pattern.

Table 5 shows the improvement obtained by

rule-based reasoning. For soccer, the SWRL

rules improve the recall, in particular. But for

‘‘box car exit,’’ recall and precision remain al-

most the same because the number of shots

classified as unknown are already low. The

results indicate that SWRL reasoning can be

useful in detecting concepts that are character-

ized by some temporal structure, such as the

race start. Table 6 compares the performance

obtained through the use of SWRL rules

and ontology reasoning to the traditionally

employed support vector machine (SVM) classi-

fication, for ‘‘shot on goal’’ and ‘‘placed kick’’

highlights.

To have a fair comparison, we trained the

SVM classifiers (with a radial-basis-function ker-

nel) on the same training set we used for the

ontology, and represented video clips with

the same vectors used for concept clustering

in the ontology and with a fixed number of

samples (five) per clip, so as to have feature vec-

tors of the same length. The improvement

caused by the Dynamic Pictorially Enriched

Ontology model is essentially due to the fact

that, in contrast to SVM, SWRL rules permit

including some contextual information,

namely temporal constraints, that allows the

system to disambiguate situations without hav-

ing to rely exclusively on visual features.

Interval between 40 and 50 seconds

Unknown concept

Player close-up

Player close-up

Fixed camera

Figure 3. Example of a

‘‘placed kick’’ pattern.

Table 5. Precision and recall of concepts with visual prototypes (VP);

with visual prototypes and SWRL reasoning (VP+SWRL), and with SWRL

reasoning only.

Shot on goal Placed kick Box car exit Race start

Highlight VP VP+SWRL VP VP+SWRL VP VP+SWRL SWRL

Correct 20 23 11 18 81 83 7

Unknown 5 2 9 2 3 1 —

Miss 5 5 1 1 19 19 3

False 6 6 12 12 54 54 2

Precision 0.77 0.79 0.48 0.60 0.60 0.61 0.78

Recall 0.67 0.77 0.52 0.86 0.79 0.81 0.70

Table 6. Precision and recall of concepts with visual prototypes and SWRL

reasoning (VP+SWRL) and support vector machine (SVM) classifiers.

Shot on goal Placed kick

Highlight VP+SWRL SVM VP+SWRL SVM

Correct 23 18 18 15

Unknown 2 — 2 —

Miss 5 12 1 6

False 6 5 12 9

Precision 0.77 0.60 0.86 0.71

Recall 0.77 0.60 0.86 0.71
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Previous Work
Previous work has focused on the use of linguistic ontol-

ogies and appropriate classifiers to associate concepts with

visual data. In these approaches, the ontology provides

the conceptual view of the domain at the schema level

while the classifiers observe the real-world sources, anno-

tating the observed entities according to the nearest con-

cept in the ontology. One work outlined a method to

perform video annotation with the MediaMill 101 concept

lexicon.1 In this work, a computer trained classifiers to de-

tect high-level concepts from low-level features, while

using WordNet to derive high-level concepts relations to

enhance the annotation performance. Another work

defined an ontology to provide some structure to the

Large Scale Concept Ontology for Multimedia lexicon,

using pairwise correlations between concepts and hierar-

chical relationships to refine concept detection of support

vector machine classifiers.2

Other works have postulated the idea of including visual

data instances in the ontology to account for the variety of

manifestations of visual information. These approaches

apply feature detectors to raw data and match the extracted

features to those of the concept instances in the ontology.

One research team, in particular, defined a visual descriptors

ontology, a multimedia structure ontology, and a domain

ontology to perform video content annotation at the seman-

tic level.3 Another team included visual objects in the

ontology instances, using qualitative attributes, such as

color homogeneity, component distribution, and spatial

relations, as descriptors.4 Still another team proposed a vi-

sual concept ontology that includes texture, color, and spa-

tial concepts and relations for object categorization.5 Finally,

in another work, researchers developed a framework for

enhancing annotations by exploiting visual context and spa-

tial relations.6

In the attempt to having richer annotations, other

researchers have explored the use of reasoning over multi-

media ontologies. In these cases, the works typically ana-

lyze spatiotemporal relationships between concept

occurrences to distinguish between scenes and events

and provide more fitting and comprehensive descrip-

tions.7,8 These works use inference to check relations and

constraints that lead to consistent interpretation of image

content, and sometimes use reasoning over whole sets of

objects.

The inclusion of data instances in the ontology

requires some mechanism for the management of the

ontology evolution. In one project, researchers addressed

the problem of temporal evolution of visual data by

checking each visual instance to determine whether it

could be associated with the existing abstract concepts

or would require a new concept defined in the ontology.9

In this project, researchers have proposed evolution pat-

terns to define the kinds of action to be performed on

the ontology.

In contrast, our own Dynamic Pictorially Enriched Ontol-

ogy framework addresses the issues raised here in several

ways: by including visual instances related to high-level

concepts and identifying their spatiotemporal patterns; by

defining visual prototypes and using them for automatic

annotation; and by supporting the evolution of visual proto-

types over time. Moreover, our approach not only empha-

sizes the need for spatiotemporal constraints among

objects and entities for complex video-content interpreta-

tion, but also proposes the use of the Semantic Web Rule

Language as an effective means to define, share, and refine

rules that can lead to more effective concept definition and

recognition.
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Conclusions

The experiments we conducted in two differ-

ent domains illustrate our model’s effectiveness

for video annotation, for supporting the tem-

poral evolution of visual concepts, and for

improving annotation performance through

rule-based reasoning. Our future work will inves-

tigate techniques to incorporate automatic learn-

ing of set of rules to perform automatic video

annotation. MM
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