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ABSTRACT
One of the simpler and most used method to alter the con-

tent of a digital image is to copy-move a portion of it onto
another area with the intent, usually, to hide something awk-
ward. In image forensics scientific community, this kind of
modification is generally detected by resorting at techniques
based on SIFT features that provide a local description which
is robust to global geometric transformations the image may
undergo. On such a basis, this paper investigates the effective-
ness of some methodologies which introduce a local warping
onto the copy-pasted patches in order to reduce the detection
capability of SIFT-based approaches. This analysis is partic-
ularly interesting in a real scenario of forensic security. Four
diverse local warping techniques have been taken into account
and experimental results with respect to final perceptual qual-
ity of the forged image are presented.

Index Terms— Local warping, SIFT, copy-move, foren-
sic security.

1. INTRODUCTION

Nowadays, local visual features are widely used for image re-
trieval and object recognition, due to their robustness to sev-
eral geometrical transformations (such as rotation and scal-
ing), occlusions and clutter. More recently, attempts have
been made to apply these kinds of features also in the image
forensics domain, in particular to understand if a digital image
is authentic or has been counterfeited. Specifically, such local
features are used to detect copy-move forgeries. In fact, this
is one of the most common image manipulations in which an
area of an image is copied and then pasted onto another zone
to duplicate or conceal something in the scene. Most of the
known algorithms which try to detect such infringement are
based on SIFT (Scale Invariant Features Transform) descrip-
tors which allow to match image keypoints presenting similar
features [1, 2].
Recently, the discussion on the reliability of image forensic
algorithms has gained importance by starting also to consider
what an attacker could try to do to invalidate a specific foren-
sic technique. To study the possible attacks to deceive the

image forensic methods and find some countermeasures are
two key issues in the forensic security field [3, 4].
Furthermore, an analysis on SIFT security has not been per-
formed yet. In [5] the impact of very specific attacks against
the SIFT descriptors is analyzed on a real CBIR (Content-
Based Image Retrieval) system in order to succeed in delud-
ing the image recognition process. However the security is-
sue of SIFT is relatively unexplored especially in the forensic
scenario of copy-move detection. In particular, being well-
known that SIFT features perform efficiently against global
geometric transformation, it is worthy to be analyzed their
behavior in front of local distortions. On such a basis, this
paper investigates the potential weaknesses of the SIFT-based
forensic method for copy-move attack detection versus differ-
ent local warping methods that an attacker could implement
in performing his illegal action.
The paper is structured as follows: Section 2 reviews the SIFT
technique and the copy-move detection method and Section 3
presents the analyzed local warping attacks. In Section 4 ex-
perimental results are presented and Section 5 concludes the
paper.

2. SIFT AND COPY-MOVE DETECTION

In this Section a brief review of the SIFT technique and of
the approach for detecting copy-move forgeries is drawn.
Given an image, SIFT features [6] are detected at different
scales by using a scale space representation implemented as
an image pyramid. The pyramid levels are obtained by Gaus-
sian smoothing and sub-sampling of the image resolution
while interest points are selected as local extrema (min/max)
in the scale-space. These points (usually called keypoints)
are extracted by applying a computable approximation of the
Laplacian of Gaussian (LoG) called Difference of Gaussians
(DoG). In particular, the SIFT algorithm approximates LoG
by iteratively computing the difference between two nearby
scales in the scale-space. Once these keypoints are detected,
SIFT descriptors are computed at their locations in both
image plane and scale-space. Each descriptor consists in a
histogram of 128 elements, obtained from a 16x16 pixels area



around the corresponding keypoint. The contribution of each
pixel is obtained by calculating image gradient magnitude
and direction in scale-space and the histogram is computed
as the local statistics of gradient directions (8 bins) in 4x4
sub-patches of the 16x16 area.

The procedure in which interest points are localized ends
with a list of N keypoints each of which is completely de-
scribed by the following information: xi = {x, y,�, o, f},
where (x, y) are the coordinates in the image plane, � is
the scale of the keypoint (related to the level of the image-
pyramid used to compute the descriptor), o is the dominant
orientation (used to achieve rotation invariance) and f is the
final SIFT descriptor.

After SIFT features are extracted the copy-move forgery
detection is performed in the SIFT space among the fi vec-
tors of each keypoint to identify similar local patches in the
test image. The best candidate match for each keypoint xi

is found by identifying its nearest neighbor from all the other
(n�1) keypoints of the image, which is the keypoint with the
minimum Euclidean distance in the SIFT space. In order to
decide if two keypoints match the ratio between the distance
of the closest neighbor to that of the second-closest one is
used, and then this ratio is compared with a threshold T (typi-
cally fixed to 0.6). For the sake of clarity, given a keypoint we
define a similarity vector D = {d1, d2, . . . , dn�1} that repre-
sents the sorted euclidean distances with respect to the other
descriptors. The keypoint is matched only if this constraint is
satisfied:

d1/d2 < T where T 2 (0, 1). (1)

Finally, by iterating over keypoints in X, we can obtain the
set of matched points which, at this stage, already provides a
draft idea of the authenticity of the image and of the presence
of duplicated areas (see [1] for further details). Procedures of
segmentation and clustering can successively be adopted to
better individuate manipulated patches.

3. LOCAL WARPING ATTACKS

The idea, proposed in this work, is to counter-attack foren-
sic techniques which detect copy-move forgeries by resorting
to a SIFT-based approach. Specifically, the counter-action is
exploited by using algorithms of local warping to reduce per-
formances of such methods. The procedure is the following:

1. Create a copy-moved forged image (F )

2. Select source (S) and destination (D) patches

3. Apply a local warping method to both S and D

4. Paste back the warped patches onto image F by obtain-
ing the final image FLW

In our analysis, we would like to check how different lo-
cal warping techniques behave in this application scenario; in
particular, we have taken into account four well known meth-
ods which will be briefly described in the sequel (multiple
copy-move are not considered at this stage).

3.1. StirMark

The StirMark software [7] is very well-known within digital
watermarking scientific community as a local random bend-
ing attack to de-synchronize watermark extraction systems. It
basically comprehends a sequence of three transformations,
whose the second applies a displacement which is zero at the
border of the image and maximum at the center (it depends
upon the parameter b), while the third, the actual local dis-
tortion, applies a random displacement at each pixel location
according to the parameter R. Perceptual quality of the stir-
marked image was usually very high but watermark recovery
was inhibited.

3.2. LPCD

The second method taken into consideration is the Local Per-
mutation with Cancelation and Duplication (LPCD) [8]. Let
� define a discrete set whose values are integer numbers in
I = [��,�]. LPCD modifies an image according to the fol-
lowing rule: if B(i, j) is a generic pixel of the distorted image
B, let B(i, j) = A(i+�h(i, j); j+�v(i, j)) where A is the
original image and �h(i, j) and �v(i, j) are i.i.d. integer ran-
dom variables uniformly distributed in I. Such modification
does not introduce block artifacts because of the overlapping
of the windows of the possible displacements for neighboring
pixels. A multiresolution version of this model has been pro-
posed to improve the obtainable perceptual results. Let n⇥m

be the size of the image and L the resolution value: a low res-
olution displacement field of size n

2L ⇥ n
2L is first generated,

then a full size displacement field is obtained by means of bi-
linear interpolation. The full resolution field is applied to the
original image to produce the distorted image. Therefore, the
parameters to be controlled are L and �.

3.3. C-LPCD

The LPCD model does not contain any constraint on the
smoothness of the displacement field, so there is no guarantee
that the set of applied distortions is perceptually invisible,
even by considering very small values of �. So in the C-
LPCD (Constrained LPCD) has been added the requirement
that the sample order is preserved thus introducing memory
in the system. In other words, the horizontal and vertical
displacements of the pixel (i, j) are limited by the horizontal
and vertical displacements of the pixels (i � 1, j), (i, j � 1)
and (i � 1, j � 1). The parameters to be controlled are the
same of the LPCD model.



3.4. Markov Random Fields

The last local warping method we considered is based on
Markov Random Fields (MRF) [9]. The objective is to gen-
erate a displacement field according to a defined Gibbs prob-
ability distribution and to a specific potential function. Firstly,
the displacement field is initialized by assigning to each pixel
(i, j) in the image a displacement vector f(i, j) generated ran-
domly (and independently from the other pixels) whose mag-
nitude is determined by relying on perceptual considerations.
Such initial random field is treated as a noisy version of an
underlying displacement field obeying the MF model. The
MF field is then obtained by applying an iterative smoothing
algorithm to the randomly generated one. The technique ran-
domly visits all the points of the displacement field and up-
dates their values by trying to minimize the defined potential
function. After that each pixel has been visited and the cor-
responding displacement updated, a new iteration starts. The
algorithm ends when no new modification is introduced for a
whole iteration. As for LPCD and C-LPCD, better visual re-
sults can be achieved by means of multiresolution MRF. The
main parameters controlling the method are then the resolu-
tion L at which the displacement field is created and the stan-
dard deviation � of the employed potential function.

4. EXPERIMENTAL ANALYSIS

In this Section the parameters of the local warping algorithms
of Section 3 are introduced, then the effectiveness against a
copy-move detection method based on SIFT is investigated.

4.1. Experimental results

To assess the impact of local warping attacks on SIFT fea-
tures we focused on a dataset of 10 JPEG color images whose
size ranged from 700⇥500 to 1000⇥800 pixels. Amongst
them we have also included the same image used by Pan
et al. in [2], which is shown in Figure 1(a). Each image
of the dataset has undergone a realistic copy-move forgery
under the hypothesis that only two patches are present in
the resulting fake, as shown in Figure 1(b). The size of the
copy-moved patches ranged approximately from 100⇥100
to 250⇥250 pixels. The manipulation has been carried on
by means of Adobe Photoshop R� . We did not resort to any
post-processing effects because they may affect the matches
between keypoints of the two patches, thus risking to alter the
final results of our study. The forensic technique we used to
detect the copy-move forgery is the one proposed by Amerini
et al. [1], integrated with the Vedaldi’s implementation of
SIFT algorithm [10] and with the parameters set as suggested
by Lowe [6]. By applying these methods to the dataset of
forged images the detection method found a matches between
copy-moved patches that ranged from 21 to 96.

Although the performance of the warping methods may be
influenced by several parameters, in order to keep the analysis

(a) Original image (b) Copy-move forgery

Fig. 1. One of the images used for the experiments: yellow
shapes indicate the copy-move forgery. The detection tech-
nique of [1] found 52 matches between copy-moved patches.

under control we have focused only on two amongst the most
important for each of them: (L,�) for LPCD and C-LPCD;
(L,�) for MRF; and (b,R) for StirMark. By assigning different
values to these pairs we can effectively control the strength of
the attack. Two examples of the results one can obtain are
shown in Figure 2: the image on the left has been produced
by means of LPCD with parameters (L,�)=(1,4), while the
one on the right by means of StirMark (v3.1) with parameters
(b,R)=(4,0.9).

Fig. 2. Examples of attacked images. Left: LPCD with
(L,�)=(1,4). Right: StirMark 3.1 with (b,R)=(4,0.9).

More specifically, in our experiments L ranged in the in-
teger interval [1,6] (step=1), � in [3,7] (step=1), � in [1,9]
(step=2), b in [6,12] (step=2) and R in [0.1,1.5] (step=0.2).
These values have been assigned accordingly with those sug-
gested by the theory underlying the algorithms and for each
forged image produced 30 attacked versions for LPCD, C-
LPCD and MRF and 32 attacked versions for StirMark.

The evaluation of the local warping impact has been per-
formed by means of the following two measures: (i) the per-
cent of matches between copy-moved patches that were elim-
inated by the attack; (ii) the average visual quality over the
two warped patches compared to their counterparts prior to
the attack. We have computed such quality by means of the
Gabor metric proposed by D’Angelo et al. [11], which was
designed to overcome the limitations of classical indices such
as PSNR or SSIM in rating the perceptual effect of local ge-
ometric attacks. Given an input image and the displacement
field of the warping attack it has undergone, the Gabor metric
provides a score in the scale [1, 5] 2 R, where values range
from “bad” quality (near 1) to “excellent” quality (near 5).
For example, the warping on images of Figure 2 removed re-
spectively the 100% and the 89% of total matches between



patches with a Gabor score of 1.03 and 1.91.
For each algorithm these two measures have been related

to each other as follows. Given a forged image, we first
sampled the percent of eliminated matches, thus obtaining
the Gabor metric’s score of all those attacked versions that
achieved a specific percent of elimination. Then we com-
puted the global score as the average of such Gabor metrics
(missing values have been obtained by means of cubic inter-
polation). The final results shown in Figure 3 correspond to
the average of this procedure over the 10 images composing
our test dataset.

Fig. 3. Average Gabor quality metric depending on the per-
cent of removed matches.

As expected, a trade-off exists between the amount of re-
moved matches and the perceptual quality: the stronger the
attack the higher the amount of matches that are removed.
This result, however, is achieved at the cost of a loss of visual
quality. If we focus on the left portion of the curves (0-50%
removed matches) we can see that StirMark is clearly out-
performed by the others methods, whose behavior is substan-
tially comparable. On the right portion (50-100% removed
matches), however, it is StirMark (along with MRF) that pro-
vides the best possible quality. Although the quality may ap-
pear low, it is important to point out that it has been calcu-
lated only on the attacked patches. If the local warping is not
excessively strong, the overall quality of the image remains
acceptable.

In Figure 4, an example of matched keypoints reduction
is presented. It is possible to see that the number of SIFT
matches between the source and destination patches is dras-
tically diminished going from the initial number of 52 to
just 8 (a loss of 88.5%) when a local warping attack (in this
case LPCD with (L,�)=(3,3)) is applied before pasting. The
global perceptual quality of the image is not affected at all,
though a Gabor score of 1.43 is obtained over the two warped
areas with respect to the un-warped case.

Fig. 4. Example of loss of SIFT matches: copy-move forgery
(left) and LPCD with (L,�)=(3,3) (right). The initial 52
matches are reduced to 8 (88.5% are eliminated) with a Gabor
score of 1.43.

In our analysis we mainly focused on images with land-
scape content. We noticed, in fact, that when the image con-
tent is characterized by many vertical or horizontal edges (e.g.
buildings, walls) all the methods, although still effective in re-
moving matches, do not provide good visual results. The rea-
son behind this is that the warping strength becomes clearly
visible along the regular edges, thus producing effects that are
perceptually more disturbing. An example is provided in Fig-
ure 5: in this case, the copy-move forgery prior to the warping
(left) is characterized by 96 matches between keypoints be-
longing to the patches. The C-LPCD attacked version (right)
removed the 60% of matches with a Gabor score equal to 1.

Fig. 5. Example of local warping on an image with reg-
ular edges: copy-move forgery (left) and C-LPCD with
(L,�)=(1,6) (right). The effects of distortions are clearly vis-
ible (60% matches removed with Gabor score 1).

5. CONCLUDING REMARKS

In this paper an analysis on the effectiveness of local warp-
ing attacks against SIFT-based copy-move detection is pre-
sented. To assess the impact of local attacks on SIFT features
we compared four different local warping algorithms in terms
of removed matches after the attack and visual quality of the
attacked patches. We showed that an increment of the attack
strength coupled with an augment in the number of removed
matches. A complete keypoints removal is possible and is
achieved, as expected, at the cost of a loss of visual quality.
The results of the attack also depend on the content of the
image: distortions, in fact, appear to be more disturbing on
images with regular edges (e.g. buildings). Several aspects
of the problem could be further investigated, such as: study
of ad-hoc warping techniques that preserve regular edges; in-



clusion of more than two copy-moved patches; analysis on a
larger number of copy-moved images.
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