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ABSTRACT
The AILAB team participated in the Social Media subtask of the
NTCIR-17 MedNLP-SC Task. This paper reports our approach to
solving the problem and discusses the official results. The presented
model performs binary classification of the tweets and, given an
UMLS term, determines whether it is present as an ADE in the
tweet. Due to this design, it does not need an intermediate ADE
extraction step, and it can be extended to newUMLS terms currently
not present in the text. The base model used in the experiments is
multilingual SapBERT, which was fine-tuned in a monolingual and
multilingual setting. The best results were achieved by training the
model on multilingual data.
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1 INTRODUCTION
The AILAB team participated in the Social Media subtask of the
NTCIR-17 MedNLP-SC Task [10]. This paper reports our approach
to solving the problem and discusses the official results.

Term normalization, a vital aspect of information processing
systems, involves aligning various natural language expressions
with specific entries in a dictionary or ontology. In the medical field,
this task is crucial for connecting reported symptoms or adverse
drug events with corresponding entries in medical ontologies like
MedDRA [2] or UMLS [1]. However, this task is challenging due to
the diverse range of natural language inputs, which can vary from
casual social media content to formal medical/legal reports.

Although extensive research has been conducted on this prob-
lem for the English language in the past decade, there remains a
lack of resources and methods for normalizing medical terms in
other languages, especially in informal texts. To address this gap,
efforts have been focused on developing multi-lingual zero-shot
contrastive models. These models are pre-trained on large datasets
of medical notes, research articles, and multi-lingual medical on-
tologies. While these embedding-based models showcase versatility,
they still face challenges in effectively transferring their knowledge
to informal language usage.

The objective of our teamwas to leverage multi-lingual zero-shot
contrastive models, and fine-tune them in a mono- or multi-lingual
setting to solve solve the ADE normalization challenge.

2 RELATEDWORK
The study of medical term normalization in the past involved two
main approaches: classification and ranking [12]. In the classifi-
cation approach, neural models encode input terms to generate
hidden representations and produce probability distributions over
classes [6, 9]. However, this becomes challenging for extensive on-
tologies due to limited data. The ranking approach, on the other
hand, focuses on prioritizing concepts based on their similarity
to input terms [3, 7]. Systems are trained on binary classification
tasks, where positive samples consist of term-concept pairs, while
negative samples comprise term-concept pairs that do not match.

Advanced contrastive pre-training strategies have been applied
in systems like BioSyn [8], CODER [12], SapBERT [4], and KRISS-
BERT [13], using UMLS to enhance medical embeddings in BERT-
based models. These methods have significantly improved per-
formance in various tasks, including zero-shot term normaliza-
tion. While SapBERT employs self-alignment techniques, CODER
maximizes similarities between positive term-term pairs and term-
relation-term triples, achieving state-of-the-art results across var-
ious tasks, including zero-shot term normalization. Furthermore,
KRISSBERT introduced an extensive pretraining procedure based
on self-supervision, combining traditional masked language model-
ing with contrastive losses, which has proven highly effective for
medical entity linking—a form of term normalization that utilizes
the entire original context rather than just the extracted term.



However, most research has concentrated on English language
resources, leading to a shortage of datasets and models for lan-
guages other than English, especially in handling informal texts,
which present unique difficulties.

Noteworthy multi-lingual resources for social media data in-
clude those provided by the SMM4H workshop, [5, 11] which intro-
duced small entity extraction and normalization datasets in Spanish,
French, and Russian, although resources for non-English languages
remain limited.

3 DATA
The task data consists of four datasets of tweets labeled for the
presence of 22 ADEs. Each dataset contains the same tweets, but
translated in different languages: Japanese, English, French, and
German. Tweets can be matched to their translations using the sam-
ple ids provided in the datasets. The 22 ADEs are signified by their
UMLS CUI (Concept Unique Identifier) and a string representing
the CUI in the same language as the tweets (e.g., C0027497:nausea
for the English dataset and C0027497:nausées for the French one).
The training data contain 7964 samples.

For the following experiments we further split the training data
into a training and a validation set with a 80:20 ratio. The split is
performed on the list of sample ids, so for any given tweet all its
translated versions belong either to the training or the validation
set.

4 METHODS
This section describes our approach to solving the problem.

Given a text, we know that none, one or several ADEs might be
contained within it.

We decided to develop twomodels: a binarymodel for ADE/noADE
classification, to filter out samples that do not contain any ADEs,
and a model for specific ADE classification.

4.1 ADE/noADE classification
To develop the model for binary ADE/noADE classification, we
perform the following two steps, illustrated in Figure 1.

(1) Data Preprocessing. All train samples are converted to have
binary labels. The label is 1 if at least one of the original 22 target
labels is set to 1, and 0 otherwise.

(2) Model Training. A transformer-based model with a binary
classification head is fine-tuned for classification on the training
set.

The result is a trained modelM1 to perform binary ADE/noADE
classification.

4.2 Specific ADE classification
This is the most complicated part of the task, since a text might
contain multiple ADEs and we are not aware of the text substring
that represents each symptom (differently from what happens in
other competitions such as SMM4H [11]). We decided to use the full
text instead of extracting the possible ADEmentions from the tweet
in order to avoid compounding the error of two models (extraction
and normalization). Therefore, we device a flexible way to query

Figure 1: Schema of the training procedure for the
ADE/noADE classification model.

the same text for the presence of multiple ADEs, framing it as a
binary classification task.

We perform the following two steps, illustrated in Figure 2.

(3) Data Preprocessing. All samples are converted to have binary
labels. For each original text, we create 22 new samples, one for
each ADE, where the sting of the ADE is attached in front of the
text as follows: "<ADE> </s> <text>". The new samples are labeled
as 1 if the specific ADE is contained in the text, and 0 otherwise.
This system allows to query the text for the presence of multiple
ADEs and is easily generalizable to new ADEs not seen during
training.

(4) Model Training. A transformer-based model with a binary
classification head is fine-tuned for classification on the training set.
The weights of the models are initialized with the ones of M1 (ob-
tained at step (2)), so the model starts with a general understanding
of the domain.

The result is a trained modelM2 to perform specific ADE clas-
sification. At inference time, the predictions can be obtained by
creating 22 samples for each new text, one for each ADE.

4.3 Monolingual and Multilingual Experiments
Since the same tweet is translated in multiple languages, we exper-
iment with two settings:

• Monolingual experiment: we create separate models for each
language (M2:ENG, M2:FRE, M2:GER, M2:JAP), where each
one of them has only seen tweets in the respective language;



Figure 2: Schema of the training procedure for the specific
ADE classification model.

• Multilingual experiment: we create a single model that was
trained on all texts (M2:ALL), regardless of the language, and
use it to infer on all datasets.

4.4 Model Specifics and Hyperparameters
The base model we chose for the experiments is a multilingual Sap-
BERT [4]. We selected this model because: it is pre-trained specifi-
cally on UMLS medical terms and it is pre-trained in a multilingual
setting.

The following are the hyperparameters used for the models and
the preprocessing steps. The hyperparameters remained the same
between the first and second phases of the training, except for the
number of epochs: in the first phase it was lowered to 3, because of
an earlier loss convergence.

(2) Model Training.

• training epochs: 3
• learning rate: 2 ∗ 10−5
• batch size = 32
• weight decay = 0.01

(3) Data Preprocessing. The number of potential training samples
after preprocessing procedure increases from 6371 to 140162, the
overwhelming majority of which belongs to class 0. This highly un-
balanced datasets leads to several issues at training time. Therefore,

we decided to limit the number of training samples in the following
way: first, we remove 90% of the original samples that contain no
ADEs, then we generate the 22 new samples for each tweet, and
finally we remove 70% of the new samples that are labeled with 0.
In this way we obtain a more balanced training set of around 18000
samples.

(4) Model Training.

• training epochs: 5
• learning rate: 2 ∗ 10−5
• batch size = 32
• weight decay = 0.01

5 EXPERIMENTS
This section discusses the official results of the proposed models
on the blind test set of the Task. In all the tasks, submission-1 was
the monolingual model, while submission-2 was the multilingual
model.

5.1 ADE/noADE classification
Table 1 reports the results for binary ADE/noADE classification.
The multilingualM2:ALL models always performs better than the
monolingual models (M2:ENG, M2:FRE, M2:GER, and M2:JAP). The
model M2:ALL reaches its best performance on the English and
Japanese datasets (0.83 and 0.82 F1 score). The monolingual models
M2:ENG andM2:JAP are also the best-performing one among the
monolingual ones.

Table 1: Results of the binary evaluation (ADE vs noADE) on
the blind test set.

ADE noADE
Dataset Model P R F1 P R F1
Japanese M2:JAP 0.52 0.97 0.68 0.98 0.64 0.78
Japanese M2:ALL 0.57 0.98 0.72 0.99 0.71 0.82
English M2:ENG 0.54 0.95 0.69 0.97 0.67 0.80
English M2:ALL 0.58 0.97 0.72 0.98 0.71 0.83
German M2:GER 0.51 0.95 0.66 0.97 0.63 0.76
German M2:ALL 0.56 0.96 0.70 0.98 0.69 0.81
French M2:FRE 0.52 0.96 0.67 0.98 0.64 0.77
French M2:ALL 0.55 0.97 0.70 0.98 0.69 0.81

5.2 Specific ADE classification
Table 2 reports the results per symptom class, calculating the per-
formance for each symptom class and then averaging them. The
multilingual model always performs better than the monolingual
models on all metrics (macro precision, recall and F1-score). How-
ever, we can observe that all models have an extremely high recall
(over 90%) and a low precision. We can therefore conclude that all
models lack a precise understanding of which ADEs are present in
the tweets and generate several false positives. A similar behavior
can be observed also on the per-ADE metrics (Table 3), where the
performance is calculated on the 0 and 1 labels regardless of the
symptom class.



In both tables, the best performance is reached on the Japan-
ese dataset, while the worst one is the performance on the French
dataset. The same is true both for the monolingual and the multilin-
gual models. Since the Japanese samples are the only ones which
were manually annotated, the low performance on the French sam-
ples might be due to inconsistencies introduced during the Japanese-
French translation.

Table 2: Results (macro average) per symptom class on the
blind test set.

Dataset Model P R F1
Japanese M2:JAP 0.48 0.93 0.61
Japanese M2:ALL 0.53 0.96 0.67
English M2:ENG 0.48 0.94 0.62
English M2:ALL 0.52 0.95 0.65
German M2:GER 0.44 0.92 0.58
German M2:ALL 0.50 0.93 0.63
French M2:FRE 0.45 0.94 0.59
French M2:ALL 0.48 0.93 0.62

Table 3: Results per ADE label on the blind test set.

0 1
Dataset Model P R F1 P R F1
Japanese M2:JAP 1.00 0.98 0.99 0.51 0.95 0.66
Japanese M2:ALL 1.00 0.99 0.99 0.58 0.97 0.72
English M2:ENG 1.00 0.98 0.99 0.47 0.94 0.63
English M2:ALL 1.00 0.98 0.99 0.51 0.95 0.66
German M2:GER 1.00 0.98 0.99 0.47 0.93 0.63
German M2:ALL 1.00 0.98 0.99 0.54 0.94 0.69
French M2:FRE 1.00 0.98 0.99 0.43 0.94 0.59
French M2:ALL 1.00 0.98 0.99 0.48 0.94 0.64

5.3 Overall Performance
Overall, the best model considering exact match accuracy is the
multilingual modelM2:ALL (see Table 4), which reaches 0.75 accu-
racy on Japanese, 0.71 on English and German, and 0.67 on French.
As observed before, both monolingual and multilingual models
reach their best performance on the Japanese dataset (originally
annotated data) and their lowest performance on the French dataset
(machine translation).

Table 4: Results of the exact match accuracy, where both
binary classification and ADE classification must be correct
to gain a point.

Dataset Monolingual
Multilingual

M2:ALL
Japanese 0.67 0.75
English 0.67 0.71
German 0.64 0.71
French 0.62 0.67

6 CONCLUSIONS
We developed a two-step method to solve the ADE classification
task on social media data presented in the MedNLP-SC Social Media
subtask. The presented model performs binary classification of the
tweets and, given an UMLS term, determines whether it is present
as an ADE in the tweet. Due to this design, it does not need an
intermediate ADE extraction step, and it can be extended to new
UMLS terms currently not present in the text. The base model used
in the experiments is multilingual SapBERT, which was fine-tuned
in a monolingual and multilingual setting. The best results were
achieved by training the model on multilingual data.

The main limitation of the proposed approach is its high false
positive rate (high recall, low precision). This could be caused by
the lack of an ADE extraction step, which makes the tweets more
difficult to process. Most of the samples contain more than one ADE,
so this could create confusing signals and interactions during train-
ing. The base model (SapBERT) was also pre-trained with samples
containing short UMLS terms only, not long complex sentences,
so the domain shift might have been too severe. In the future, it
would be interesting to add an ADE extraction module to measure
its effect on the system, or experiments with other base models that
were pre-trained on longer medical texts.
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