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Abstract

Accurately estimating the amount of productive time remaining to a machine
before it suffers a fault condition is a fundamental problem, which is com-
monly found in several contexts (e.g. mechanical systems) and can have great
industrial, societal, and safety-related consequences. Recently, deep learning
showed promising results and significant improvements towards a solution to
the Remaining Useful Life estimation problem. In this paper, the usage of a
sequence model called Neural Turing Machine (NTM), which can be seen as a
“computer” that uses the available data to learn how to interact with an ex-
ternal memory, is thoroughly explored. In particular, even by using a single
NTM as the key feature extraction component, more accurate solutions can
be obtained when compared to widely used Long Short-Term Memory-based
solutions. Moreover, such an improvement can be obtained while using fewer
learnable parameters. The proposed approach is validated using sensor data
of aircraft turbofan engines and particle filtration systems, obtaining com-
petitive results to state-of-the-art techniques. Furthermore, the source code
is released at https://github.com/aranciokov/NTM-For-RULEstimation to
provide a strong baseline for the community, to support reproducibility and
faster advancement in this field.
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1. Introduction

One of the most important problems in the Prognostics and Health
Management field is called Remaining Useful Life (RUL) estimation which
consists in estimating how long it will take for a mechanical device under
analysis to reach a situation where the likelihood of a failure is above a given
threshold [1]. On the one hand, estimating the RUL precisely and reliably
can have a great impact on maintenance-related costs, since it is possible to
foresee when a failure will happen and thus plan accordingly the required
intervention. On the other hand, failing such an estimation can have not
only crucial economic consequences, but also a decrease in the reliability of
a brand and may also create life-threatening situations, e.g. the disastrous
crumbling of the I-35W in Minneapolis, Minnesota [2] or the more recent
Morandi Bridge in Italy [3].

Common approaches for the RUL estimation can be divided into model-
based and data-driven. Model-based approaches estimate the remaining life
by leveraging mathematical or physical models of the degradation phenomena
[4, 5]. These methods often require extensive expert knowledge, expensive
verification, and for some components it is quite challenging to establish
an accurate physical model. Differently from these approaches, data-driven
methods rely on the availability of historical sensor data to build a degra-
dation model. When it is not possible to observe multiple instances of each
fault mode, for instance in industrial contexts where a fault may create life-
threatening situations, these sensor data can be obtained via simulation soft-
ware, e.g. in [6, 7], or experimental rigs, e.g. in [8, 9]. Many of the works
following the data-driven approach manually design features in both the time
and frequency domains and use them to learn a model through self-organizing
maps [10], hidden Markov models [11], etc. While statistics play a major role
in deciding which features to use and how to combine them effectively, this
feature engineering step can be time consuming and may still rely on prior
knowledge. Conversely, deep learning makes it possible to automate the
feature extraction process and work directly on the raw sensor data. The
more successful deep learning-based approaches for this problem leverage se-
quence models to extract useful features from the sensor measurements and
to identify temporal dependencies in the data. In particular, Long Short-
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Term Memory networks (LSTM) [12] are widely used as the key component
to automate the feature extraction process [13, 14, 15, 16, 17].

An interesting neural network architecture which has not been explored
until recently for the RUL estimation problem [18, 19] is the Neural Tur-
ing Machine (NTM). NTMs [20] are sequence models which, differently from
LSTMs, interact with an external memory decoupled from the computation.
As shown by Graves et al. [20], this makes it possible to achieve better perfor-
mance on several algorithmic tasks, including the “associative recall”, which
resembles sequence modeling and consists in asking the model to recall an
item from a list by querying it with the preceding item. This problem shares
some similarities to the estimation of the RUL: if the list consisted of sensor
measurements and associated RUL values, the current measurements could
be used as a query to obtain the associated RUL value. Therefore, NTMs
may also provide a more reliable tool than LSTMs for the RUL estimation
problem.

In this paper, it is shown that even by using a simple model made of
a single NTM and a decoder based on fully-connected layers it is possible
to outperform widely adopted LSTM-based models, while also using fewer
learnable parameters (28% less) and therefore with a smaller memory foot-
print. This is empirically validated with multiple experiments on two public
datasets, the C-MAPSS dataset [6] and the PHM Society 2020 Data Chal-
lenge dataset [9]. Furthermore, the proposed method obtains competitive
results with several state-of-the-art architectures which use deeper networks,
bidirectional reasoning, or additional pretraining. Therefore, the experimen-
tal results show that providing access to an external memory can be beneficial
to deal with the task, possibly implying that NTMs can be a better build-
ing block to design more complex architectures and to automatically extract
features from the available time series.

The major contributions of this work can be summarized as follows:

• A thorough empirical study is performed to explore the usage of NTMs
as the main feature extraction component for the Remaining Useful
Life estimation problem.

• Consistent empirical evidences are provided to show that NTMs are
a powerful and efficient model which outperforms the more popular
LSTM-based models, while being also less parameter-demanding and
thus more memory-efficient which makes it possible to use in memory-
constrained environments. Given the similar underlying nature of the
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two sequence models, it is possible to integrate the NTM within other
architectures and improve the final performance.

• The proposed simple model achieves an estimation error comparable
and even competitive with respect to the error obtained by other ar-
chitectures found in literature, which are more complex, use ensemble
of models, and additional pretraining.

• Multiple experiments are performed on two public datasets dealing with
aircraft engines (C-MAPSS) and particle filtration systems (PHM Soci-
ety 2020 Data Challenge), showing the strengths of the proposed model
while also highlighting some limitations related to industrial contexts.

• The source code is released, to ensure reproducibility and to provide a
strong, open source baseline otherwise difficultly found in the commu-
nity.

In Section 2 the scientific literature related to this manuscript is introduced.
Then, in Section 3 the details about the methodology are described, by focus-
ing on the application of the Neural Turing Machine to the RUL estimation
task. All the experiments performed throughout this manuscript are de-
scribed in Section 4. Finally, in Section 5 some conclusions are drawn about
the work done and possible future works are mentioned.

2. Related Work

Model-based and data-driven methods. Estimating the remain-
ing useful life of a system has been a strategic research problem for several
decades [21, 22]. Traditional approaches can be divided into model-based
and data-driven.

The former are based on the availability of mathematical or physical
models of the degradation phenomena, such as spall propagation models for
rolling bearing elements [23] or crack growth models for a system experiencing
fatigue [24]. Model-based methods require an in-depth understanding of the
underlying system and the failure modes. Furthermore, these approaches
are built in a case-by-case scenario, making them difficult to be applied in
different contexts without spending a considerable effort.

Methods following a data-driven approach rely on the availability of his-
torical sensor data to build a degradation model. In situations where the
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machinery is frequently maintained and faults are never observed, the sensor
data can be obtained through simulation models [6, 7] or through experimen-
tal rigs [8, 9]. Notable examples of data-driven methods include statistical
methods, such as Auto Regressive Integrated Moving Average [25, 26] and
hidden Markov models [11, 27], and Artificial Intelligence methods, e.g. by
using self-organizing maps [10] and Support Vector Machines [28]. Differ-
ently from the model-based approach, the data-driven methodology does not
require a deep understanding of the underlying system. Yet, in data-driven
methods which do not employ deep learning the features are manually de-
signed and extracted from the raw data, therefore this feature engineering
step can be time consuming and may still rely on domain knowledge.

Deep Learning-based methods. Differently from previous approaches,
deep learning makes it possible to automate the process of feature extraction
from the raw sensor data. The attention towards these techniques has been
promoted thanks to the availability of public datasets (e.g. [6, 8]) and the
possibility to exploit high quality sensors to frequently measure the evolution
of different characteristics of the mechanical system under analysis.

Basing their works over the assumption that time series can be inter-
preted as images and the success obtained in computer vision tasks, ap-
proaches based on Convolutional Neural Networks (CNN) were explored for
RUL estimation. Babu et al. [29] and Li et al. [30] explored deep CNN-
based methods, whereas Cornelius et al. [31] leverages heteroscedastic and
epistemic uncertainties to improve the RUL estimation in a deep CNN-based
network. Nonetheless, the temporal dependencies occurring in sensor data
hardly are learned by these techniques.

Therefore, sequence models (e.g. LSTM networks) are often exploited be-
cause of their ability to model the evolution of the measured features. Both a
Multilayer Perceptron and a RNN were used in [32]. Due to the length of the
time series considered in this field, RNNs can have problems remembering
the important information and capturing long term dependencies, which has
encouraged several researchers to exploit memory-based networks to store
key information, such as GRUs [33, 34, 35] or LSTMs [13, 14, 15, 17, 33, 36].
Recently, [16] proposed an ensemble of bidirectional LSTM-based models,
each trained on the input data framed with windows of a different size, in
order to have each model focus on temporal dependencies that require more
or less time to develop. A sequence model which was only recently used in
some works [18, 19] on RUL estimation consists in the NTM. Graves et al.
introduced this sequence model in [20], where they show that NTMs outper-
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form LSTM networks in five tasks with increasing complexity, including: the
“copy” task, which requires the model to observe a sequence and copy it in
output; the “repeated copy”, which is an extension of the previous task and
asks the model to repeat the copy a given number of times; the “associative
recall” task, which resembles sequence modeling and consists in recalling an
input item that follows a given “query” item in a previously processed list
of items; the “dynamic n-gram”, which tests the capabilities of the models
to learn a probability distribution; finally, the “priority sort” task, which re-
quires the model to learn how to sort a sequence based on a priority vector.
NTMs were introduced within the RUL estimation field by Falcon et al. in
[18] and [19], where they obtained a lower prediction error than previously
published works. Yet, in these works the NTM is used within bigger and
complex architectures, so it is not clear how much the NTM is helping the
whole approach. Conversely, in this paper the attention is driven towards the
contribution given by the NTM when used as the whole feature extraction
mechanism. In particular, even by using a single NTM as the feature extrac-
tor better performance are achieved than more popular LSTM-based meth-
ods, while also using around 28% fewer learnable parameters. Furthermore,
these results are empirically validated by performing multiple experiments
on two public datasets, the C-MAPSS dataset [6] and the PHM Society 2020
Data Challenge dataset [9].

3. The proposed Approach

A schematic overview of the proposed approach is shown in Fig. 1. First
of all, the raw input time series are preprocessed following three simple steps:
they are normalized using MinMax, i.e. x′i = 2(xi−Xmin)

Xmax−Xmin
−1 where Xmax, Xmin

represent maximum and minimum value of feature X; labeled, during train-
ing, with a piece-wise linear degradation function [32], limiting the RUL to
125; and cut into shorter time series using a sliding window technique. After
the preprocessing, they are fed to the cells of the NTM. The hidden states
computed by the NTM are interpreted as the feature vectors for the given
time series. Each feature vector is then mapped to estimate RUL values
through a simple decoder made of two stacked fully connected layers.

3.1. Neural Turing Machine

In the NTM, shown in Fig. 2, the memory bank M ∈ Rl×s is made
of l memory locations, i.e. M = [m1,m2, ...,ml], where each of them is a
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Figure 1: A graphical overview of the proposed approach. The time series are first cut
into shorter windows, then fed to the network. The Neural Turing Machine is used as
the feature extractor. Finally, two stacked fully connected networks are used to map the
extracted features to a sequence of RUL values.
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Figure 2: At time t, the NTM updates the hidden state ht+1 (red) by using its memory M ,
input vector ot, and previous hidden state ht. It is functionally separated into attention
(yellow) with weights αt and βt, read/write operations (blue), and memory slots (green).

vector with s features, i.e. mi ∈ R1×s. Considering as input a windowed
time series T ∈ Rtl×f , made of tl vectors of size f , the NTM sequentially
processes T by extracting, storing, and eventually retrieving some of the
most important information from each of the tl measurement vectors using
learnable read and write operations. In this way, the operations performed
by the NTM use many memory vectors, whereas LSTM networks rely on one
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memory vector and thus it is likelier that previously obtained information
is rewritten and lost. The NTM also updates an hidden state ht ∈ R1×s

at each time step, which acts as a summary of the measurement vectors
received so far and their interactions over time. The sequence of hidden
states H = {hi | i ∈ N+, i ≤ tl} is then used as the automatically extracted
features of T . Hence, the feature extraction process depends entirely on the
NTM and its interactions with the raw sensor data, whereas Falcon et al.
used the NTM on top of an LSTM [19] or in conjunction with a CNN and
self-attention layers [18], therefore making unclear the contribution given by
the NTM in the whole approach. As shown in Fig. 2 the input to the NTM
at time step t is represented by ot ∈ R1×f and consists of the measured value
of f different sensors. Three types of operation are sequentially performed
by the NTM: write, read, and hidden state update.

Write operation. At time t, the memory bank is updated by writing
new information obtained by the current sensor measurements ot and the
previous hidden state ht−1. In this way, it stores new knowledge from the
input, while maintaining some of the previously captured information. The
information to be written into the memory, i.e. the content vector ct ∈ R1×s,
is computed as follows:

ct = δp1(σ([ot, ht−1]Whc + bc)) (1)

where δp1 is the dropout [37] operator with probability p1 ∈ [0, 1], [·] is the
concatenation operator, ot ∈ R1×f represents the current sensor measure-
ments vector, and ht−1 ∈ R1×s the previous hidden state. Whc ∈ R(f+s)×s

and bc ∈ R1×s are trainable parameters. To determine how much the memory
should be modified, an attention mechanism is used in order to compute a
weight for each of the l memory locations. This is done as following:

at = δp1(va tanh([ct, ht−1]Wha + ba)) (2)

αt,i =
exp(at,i)∑l
j=1 exp(at,j)

for i = 1, ..., l (3)

In particular, αt = {αt,1, . . . , αt,i, . . . , αt,l} represents the attention weights
and Eq. 3 satisfies

∑
i αt,i = 1. Wha ∈ R(s+s)×l, va ∈ R, and ba ∈ R1×l

are trainable parameters. Differently from previously published NTM-based
networks, the dropout operator is added both in Eq. 1 and Eq. 2 in order
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to mitigate overfitting situations and to improve the generalizability. Each
memory slot mi is then updated in the following way:

mi = αt,ict + (1− αt,i)mi for i = 1, ..., l (4)

using the attention weights to balance how much of the new information (in
ct) should be saved inside the memory. This also helps the model to under-
stand the underlying relations between the evolution of the different sensors:
the new information is spread unevenly throughout all the memory locations,
making it possible to store in each of them different key information.

Read Operation. After the update of the memory bank M , the NTM
reads from M the new data which is used to update the hidden state. This
operation is performed in a similar way to the write operation. First of all,
as in Eq. 2 and Eq. 3, attention weights are computed on ct and ht−1. As
for the write operation, the computation of the attention is regularized by
the dropout operator. Then, the attention weights are used to compute a
weighted average of the vectors currently contained in the memory, obtaining
a read vector rt. Since M contains information gathered from all the sensor
measurements and their interaction over time, rt represents an informative
summary of the current health-related state of the mechanical system.

Dropout-augmented read and write operations. As mentioned be-
fore, both the write and read operations are augmented in this work by adding
the dropout operator. As shown by Srivastava et al., this operator may mit-
igate overfitting and improve the performance on many heterogeneous tasks
[37]. This is possible by reducing the co-adaptation: at training time, the
parameters of the neurons are updated in a way such that they try to fix the
mistakes made by other neurons, i.e. they co-adapt. By using the dropout, a
fraction of the neurons is randomly shut off at training time, therefore mak-
ing the neurons less prone to rely on co-adaptation. Since this phenomenon
is unlikely to generalize, reducing it may lead to improved generalization.

Hidden State Update. Finally, the hidden state is updated with the
knowledge gathered from the updated memory bank, the previous hidden
state, and the current input measurements:

ht = σ(otWoh + rtWrh + ht−1Whh + bh) (5)

where Woh ∈ Rf×s, Wrh ∈ Rs×s, Whh ∈ Rs×s, and bh ∈ Rs are trainable
parameters. The sequence of hidden states h1, h2, . . . , hN are grouped in a
matrix H ∈ Rtl×s and used as the automatically extracted features for the
input time series.
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3.2. RUL Decoder

After the features are extracted by the NTM, a simple decoder (see Fig. 1)
is employed to learn a mapping from these features to RUL values:

d1 = δp2(σ(HWdh + bdh)) (6)

d2 = d1Wdo + bdo (7)

where Wdh ∈ Rs×fc, Wdo ∈ Rfc×1, bdh ∈ Rfc, and bdo ∈ R are trainable
parameters, and σ is the sigmoid function. As the output of this step, d2 ∈
Rtl×1 is obtained, which represents the sequence of predicted RUL values.

3.3. Loss function

To train the model and obtain optimal weights and biases from a labelled
and preprocessed training dataset, the Mean Square Error (MSE) of the
predicted RUL is optimized with respect to the groundtruth values. It is
defined as: MSE = 1

n

∑n
i=1(RUL

′
i − RULi)

2, where n is the total number
of data samples, RUL′i and RULi represent respectively the predicted and
groundtruth RUL for the i-th data point.

4. Experimental Results

4.1. Datasets under analysis

To evaluate the proposed methodology, two public datasets are con-
sidered: the NASA C-MAPSS Turbofan Engine Degradation Simulation
Dataset [6] and the PHM Society 2020 Data Challenge [9].

The C-MAPSS dataset consists of 4 subdatasets (named FD001, FD002,
FD003, and FD004) of multiple multivariate time series. Every measurement
vector contained in each series is made of three operational settings and 21
sensor values, each recording distinct physical characteristics of the consid-
ered system. These include temperature and pressure measured at the fan
inlet, and the temperature measured for each module in the gas path (HPC,
HPT, and LPT). A full list of the considered characteristics can be found
in Table 1 (from Saxena et al. [7]), whereas Figure 3 (left) presents a sim-
plified diagram of the turbofan engine. The data points come from different
turbofan engines of the same type, which have different levels of initial wear.
While training series are run-to-failure, testing series have a positive RUL
which represents the target label. Table 2 shows a summary of the number
of time series, fault and operational conditions found in each subdataset.
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Description of the characteristic Units

Total temperature at fan inlet °R
Total temperature at LPC outlet °R
Total temperature at HPC outlet °R
Total temperature at LPT outlet °R
Pressure at fan inlet psia
Total pressure in bypass-duct psia
Total pressure at HPC outlet psia
Physical fan speed rpm
Physical core speed rpm
Engine pressure ratio –
Static pressure at HPC outlet psia
Ratio of fuel flow to static pressure at HPC outlet pps/psi
Corrected fan speed rpm
Corrected core speed rpm
Bypass ratio –
Burner fuel-air ratio –
Bleed enthalpy –
Demanded fan speed rpm
Demanded corrected fan speed rpm
HPC coolant bleed lbm/s
LPT coolant bleed lbm/s

Table 1: Description of the 21 sensors available in the C-MAPSS dataset, from [7].

In the experiments performed in this paper, some of the raw input features
are ignored because they are constant and thus not informative. In particular,
14 sensor measurements out of the total 21 sensors are kept, whose indices are
2-4, 7-9, 11-15, 17, and 20-21. A similar selection is also done in [15, 19, 38].

Moreover, the three operational settings can be used in datasets FD002
and FD004 to identify six operational conditions, as reported in [6]. These
settings affect the measurements because an engine behaves differently based
on its operational condition (e.g. whether the airplane is taking off or it is
cruising above the clouds). Hence, for these two datasets, KMeans [39] is
used to cluster the measurements into six groups. Then, the data within
each cluster are normalized using MinMax, in order to use the same scale
to treat data sampled in the same condition [29]. Each of the measurement
vectors in FD002 and FD004 is then augmented concatenating the one-hot
encoding of the operational condition, thus increasing the input size from 14
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Figure 3: (left) Diagram of the turbofan engines considered for the C-MAPSS dataset [7].
(right) Diagram of the experimental rig used for the PHM Society 2020 challenge [9].

to 20. A similar data preprocessing approach was also reported in [13, 18, 29].
Finally, a value tl for the window size is decided and used over all the

four datasets. To determine tl, five different values are tested: 30, 40, 50, 60,
and 70. For easier reproducibility, Table 2 reports the amount of windowed
time series observed during training after the train/validation split.

The second dataset, abbreviated to “PHM20”, is released as part of the
PHM Society 2020 Data Challenge [9] and consists of sensor measurements
collected from an experimental rig used to simulate failures in a particle fil-
tration system, which are widely used in industrial environments. This type
of system is subject to clogging due to the presence of contaminants in the
liquids and, in this case study, such a clog can be identified when the pressure
difference is higher than 20 psi. The public dataset consists of 24 experiments
for training and 8 for validation. Each experiment is annotated with the con-
centration (from 40% up to 47.5% with 2.5% increments) and the size of the
particles (in the range 45-53um, or in the range 63-75um), and consists of
several thousands of measurements, sampled at 10 Hz. Each sample is anno-
tated with three sensors: the flow rate measured with a flowmeter, and both
the upstream and downstream pressures which are measured with pressure
transducers. A schematic of the experimental rig is shown in Fig. 3 (right).
For each time step, five input features are considered: the three sensors, the
concentration value, and the size of the particles. Then, these values are
normalized with MinMax. In this work, the RUL is considered to be 0 when
the pressure difference is higher than 20 psi and the time series are labelled
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Dataset FD001 FD002 FD003 FD004

Train time series 100 260 100 248

Test time series 100 259 100 248

Operating conditions 1 6 1 6

Fault conditions 1 1 2 2

Max length (testing) 303 367 475 486

Min length (testing) 31 21 38 19

Training samples with

tl=30 12100 32756 15499 38350

tl=40 11400 30936 14799 36610

tl=50 10700 29116 14099 34870

tl=60 10000 27296 13399 33130

tl=70 9300 25476 12699 31390

Table 2: Summary of the subdatasets of the C-MAPSS dataset.

with the piece-wise degradation function (with 125 as the maximum value),
as in Ince et al. [40]. As in the previous case, five values for the window size
tl are considered but, since the time series in PHM20 are longer than those
in C-MAPSS, these values are bigger than before: 70, 140, 210, 280, and 350.

4.2. Model evaluation

To evaluate the performance, the main metric used consists in the Root
Mean Square Error (RMSE). Furthermore, for the C-MAPSS dataset the
Scoring Function is also considered, whereas the Mean Absolute Error (MAE)
is used for the PHM20 dataset.

4.2.1. Scoring Function

The Scoring Function was initially proposed in [6] and is defined as:

S =
n∑

i=1

si , where si =

{
e

−ei
13 − 1, ei < 0

e
ei
10 − 1, ei ≥ 0

(8)
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Figure 4: Average testing RMSE (with standard deviation) on FD001 using the best
validation model. Hyperparameters s, l, and fc shown on x axis.

where S is the computed score, n is the total number of data samples,
and ei = RUL′i−RULi is the difference between estimated and groundtruth
RUL at the i-th data point. The asymmetric nature of this function penalizes
more the “too optimistic” predictions, meaning that it gives a higher score
(i.e. worse) when the model predicts v̂ but the true RUL is v such that v < v̂,
thus leading to an unpredicted early failure of the considered system. On
the other hand, it penalizes less an “early” prediction (i.e. v̂ < v): although
such prediction may trigger a superfluous maintenance, it should not lead to
unexpected failures, possibly avoiding more severe consequences.

4.2.2. Root Mean Square Error and Mean Absolute Error

RMSE and MAE are commonly used to evaluate prediction accuracy,
both giving equal weights for both early and late predictions. A key difference
between the two metrics is how much they punish observations which are
further from the mean: in particular, RMSE is a quadratic scoring rule,
therefore it is more sensitive to large errors in the predictions.

4.3. Implementation details

The training is performed for 50 epochs, using a variable learning rate,
starting from 0.005 and decaying it by a factor of 0.6 every 15 epochs. For C-
MAPSS, the training time series (before cutting them into windows) are split
with a 70/30 ratio to create the training and validation splits. For the PHM20
dataset, the original validation set is used as the testing set, and the training
set is split with a 80/20 ratio to define the train and validation splits. 10 runs
are performed and for each the best model on the validation set is selected
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Method s, l, fc values Param. count RMSE
LSTM [13] 32, 64, 8 31,761 16.14
Our NTM 32, 128, 64 22,945 15.23±0.66

LSTM 32, 48, 8 23,057 16.40
Our NTM 64, 64, 64 35,105 15.46

Table 3: Comparison of RMSE over FD001 with respect to the LSTM-based solution
proposed in [13]. Better results, more efficiently (about 28% fewer parameters).

and used for testing. During training, the mini-batch gradient descent (batch
size 100), and RMSProp (momentum 0.9, weight decay 0.0005) are employed.
The dropout rates are set to p1 = 0.1 and p2 = 0.25.

The bias bh is initialized to zero, and the weights va and vb are sampled
from a normal distribution with mean 0 and standard deviation 0.01. All the
other weights and biases are initialized by sampling from a uniform distribu-
tion in the range [−

√
k,
√
k], where k = 1

in fts
and in fts is the number of

input features of the weight or bias (e.g. for Whb ∈ R(s+s)×l, k = 1
s+s

). The
memory bank and hidden state are initialized with zeros.

Finally, PyTorch 1.3.0 is used to implement the proposed solution1.

4.4. Discussion of the results on the CMAPSS dataset

Grid search results. To determine the best combination of the hyper-
parameters used in the proposed approach, i.e. the two sizes s and l of the
NTM, and the hidden size, fc, of the decoder, multiple runs are performed
on FD001. By using fc = 8, high RMSE values (around 12% higher than
other combinations) are obtained, possibly implying that such a low number
of neurons in the decoder is not enough to learn a meaningful RUL estima-
tion function. Higher values for fc lead to better accuracy, although s and l
influence the overall performance as well, as shown in Fig. 4.

Parameter efficiency of the NTM. By using the external memory,
the NTM may learn better features with less parameters. To investigate
this, a fair comparison to the LSTM-based solution proposed in [13] is made,
because they perform hyperparameter optimization as well. Table 3 reports
a lower estimation error for the NTM (15.23 compared to 16.14), while also
using 28% fewer parameters (22945 compared to 31761), making it a better

1The code is released at: https://github.com/aranciokov/NTM-For-RULEstimation
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a) FD001 b) FD002

c) FD003 d) FD004

Figure 5: Average testing RMSE (with standard deviation) using five combinations of s,
l, and fc (see Sec. 4.4), and five values for the window size. Over FD001, shorter time
windows lead to better results, whereas longer windows are preferred for the other, more
complex datasets. Best viewed in color.

approach when dealing with memory-constrained environments, e.g. embed-
ded. Furthermore, even if the two networks had a similar amount of pa-
rameters, the NTM would still perform better, as reported in Table 3 (15.46
compared to 16.14 using around 32000 parameters, and 15.23 to 16.40 using
23000 parameters).

Window sizes. The size of the windows used during training (see Sec. 3)
can be seen as another hyperparameter, since longer series may be more
difficult to deal with but may also be more informative. Fig. 5 reports
the error obtained over the four datasets using the five best combinations of
hyperparameters (s, l, fc) found in the previous experiment, and five different
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Methods FD001 FD002 FD003 FD004
MLP [29] 1.8×104 7.8×106 1.7×104 5.6×106

CNN [29] 1.3×103 1.4×104 1.6×103 7.9×103

LSTM [13] 3.4×102 4.4×103 8.5×102 5.5×103

Our NTM 3.8×102 5.5×103 3.0×102 5.2×103

BiLSTM [14] 2.9×102 4.1×103 3.2×102 5.4×103

GADLM [38] 2.3×102 3.4×103 2.5×102 2.8×103

NTM-Hybrid [18] 2.1×102 6.0×103 2.7×102 4.8×103

Table 4: Comparison on the C-MAPSS dataset using the Scoring function (see Sec. 4.4
for the discussion).

sizes for the windows, i.e. 30, 40, 50, 60, and 70. For dataset FD001 (Fig.
5.a), short windows are more beneficial than longer time windows. The easier
nature of this dataset may explain this, since the RUL values are influenced
only by one operating condition and one fault condition. Conversely, for
FD002 to FD004 these short time windows are not optimal, as the events
which lead to a fault likely require more time to develop. All the following
experiments use 70 as the window size.

Qualitative analysis. Figure 6 displays the predictions (blue) and
groundtruth values (red) over the four datasets, showing that the proposed
model can effectively estimate the RUL of unseen time series in the testing
set. To give further evidence of this, Fig. 7 presents some examples of pre-
diction on the testing set, showing that the RUL progression can be reliably
predicted. Moreover, the accuracy increases as the fault gets closer.

Limitations of the piece-wise function. In the experiments presented
both in this paper and in the literature, e.g. by Zheng et al. [13] and Babu
et al. [29], the estimation error observed on FD002 and FD004 is higher than
FD001 and FD003. This is mainly due to two factors. First, datasets FD002
and FD004 are more difficult, due to multiple operating conditions affecting
the captured measurements. Secondly, the de facto standard degradation
function [32] used to label the C-MAPSS dataset is not a perfect solution. In
fact, since it limits the maximum RUL value observed during training, it is
hard for any model to correctly predict at testing time RUL values which are
higher than such a maximum. As an example, FD004 contains 67 (out of 248)
times series with a RUL higher than 125 and the model fails these predictions
(see Fig. 6.d). A new challenge is thus brought to light: the function proposed
in [32] is in fact widely accepted and used [13, 14, 16, 18, 29, 30], yet this
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d) Predictions for FD004

b) Predictions for FD002

c) Predictions for FD003

a) Predictions for FD001

Figure 6: Comparison between predicted (blue) and groundtruth RUL values (red).

Figure 7: Examples of prediction (red) made by the proposed model during testing. The
model generalizes well over unseen test examples. Note that the true RUL for testing series
is only known for the last time step: a linear degradation is shown here for comparison.
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Methods FD001 FD002 FD003 FD004
MLP [29] 37.56 80.03 37.39 77.37
CNN [29] 18.45 30.29 19.82 29.16

LSTM [13] 16.14 24.49 16.18 28.17
Our NTM 16.05±1.2 26.21±0.6 13.90±0.6 27.67±0.7

DCNN [30] 13.32 24.86 14.02 29.44
BiLSTM [14] 13.65 23.18 13.74 24.86
GADLM [38] 12.56 22.73 12.10 22.66
Sim-Sup [41] 18.33 - 12.73 -

MTW-BLSTM [16] 12.61 - - -
Multi-Local [42] 14.1 - - -

NTM-Hybrid [18] 12.53 27.04 13.73 28.11

Table 5: Comparison on the C-MAPSS dataset using the RMSE (see Sec. 4.4 for the
discussion).

study shows it may not be the most appropriate solution for the task. Few
works are actively working on alternative labeling functions, e.g. [15], but
no definitive solutions are available to date.

Comparison with similar architectures. In Tables 4 and 5, the re-
sults obtained using s = 32, l = 128, fc = 64 are presented and compared
to other published works. In particular, since the focus of this work is to
explore the NTM as the main feature extraction component, it is more fair
to compare to architectures following similar principles. As shown in both
the Tables, models leveraging the sequential nature of the data, i.e. LSTM
and NTM, obtain a lower estimation error. Moreover, the NTM excels in
both metrics on the datasets involving multiple fault conditions (FD003 and
FD004), and in terms of RMSE on FD001 (Table 5).

Comparison with more complex architectures. For a more com-
prehensive comparison, published works with more complex architectures,
pretraining, etc are also considered in Tables 4 and 5. Compared to the deep
CNN used by Li et al. [30], the NTM achieves a lower RMSE when multiple
fault conditions affect the sensor measurements (13.90 and 27.67 compared
to 14.02 and 29.44). Interestingly, although using only one direction to an-
alyze the data, it achieves lower scores (3.0×102 and 5.2×103 compared
to 3.2×102 and 5.4×103) than bidirectional LSTMs [14]. Multiple models
(e.g. Xia et al. [16]) and additional pretraining (e.g. Ellefsen et al. [38])
lead to more accurate predictions, but these techniques could be also applied
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s l fc RMSE

16 128 64 11.35
32 128 64 7.03
64 128 64 5.87
128 128 64 7.10

64 16 64 10.11
64 32 64 5.50
64 64 64 5.45
64 128 64 5.87

64 64 16 16.46
64 64 32 7.32
64 64 64 5.45
64 64 128 6.12

64 64 64 5.45

Table 6: Hyperparameters optimization on PHM20 dataset.

to NTM-based solutions. Moreover, all the LSTM-based solutions could be
further improved by replacing the LSTM with an NTM.

Finally, there are other recent papers employing LSTM (e.g. [17]) or
CNN components (e.g. [43]) which perform better. Yet, a fair comparison is
difficult to make: their experimental setting is different as the testing labels
are also rectified by the piece-wise function, which is not done in this work.

4.5. Discussion of the results on the PHM20 dataset

Hyperparameters tuning. As for the C-MAPSS dataset, the influence
of the hyperparameters of the NTM (s, l, and fc) is explored on the PHM20
dataset. Since it contains longer time series, the window size tl is initially
fixed to 210. Here, s, l, and fc are varied in {16, 32, 64, 128}. The average
RMSE (on 10 runs) is reported in Table 6. Two observations can be made.
First of all, 64 represents an optimal value among those analyzed for the
three hyperparameters, leading to an RMSE of 5.45. Secondly, the size s
of the memory locations and the number fc of neurons in the decoder are
highly influential on the final performance.

Temporal context and external memory. By continuously inter-
acting with the external memory, NTMs may be able to deal with longer
time series than LSTMs. This may be strategic in industrial settings, where
sensor measurements can be collected frequently over long periods of time.
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Our NTM LSTM [13]

window size tl MAE RMSE MAE RMSE

70 4.44 6.82 4.97 7.05
140 4.54 6.74 5.38 7.77
210 3.74 5.45 5.09 7.30
280 3.73 5.37 5.45 7.59
350 4.97 6.93 5.45 8.42

Table 7: Comparison on PHM20 dataset between the proposed model and the LSTM-based
model from [13]. Performance is measured both with RMSE and MAE.

To confirm this surmise, the performance of the two networks are compared
as the length of the temporal context tl increases. For the LSTM the same
hyperparameters as in Zheng et al. [13] are used, whereas for the NTM
s = 64, l = 64, and fc = 64. Table 7 reports the performance both in terms
of MAE and RMSE. For the NTM, tl = 280 represents an optimal value,
whereas for the LSTM tl = 70 leads to best results, although the error is far
higher than the one achieved with the NTM. Two observations can be made.
Firstly, the surmise is confirmed, since the NTM manages to deal with longer
sequences, whereas the LSTM shows a decreasing accuracy as the sequences
become longer. Secondly, the NTM has a better prediction capability than
the LSTM on all the values tested for tl, obtaining an estimation error as
low as 5.37 RMSE and 3.73 MAE compared to 7.05 RMSE and 4.97 MAE
obtained by the LSTM.

Comparison with state-of-the-art. Table 8 reports a comparison to
state-of-the-art methods which took part into the PHM Society 2020 Data
Challenge [9], alongside the LSTM-based model used in previous experi-
ments. The winner of the challenge (Lomowski et al. [44]) used a non-
comparable methodology, therefore it is not included here. Ince et al. [40]
used Machine Learning techniques, including random forest and gradient
boosting (implemented with Scikit-learn [45] and CatBoost [46]). For these
two methods, the results obtained by running the public implementation
provided by the authors are reported. With the proposed approach a lower
estimation error is obtained, measured both with MAE and RMSE.

4.6. Discussion of NTM applicability to industrial contexts

The previous subsections show that a more accurate prediction is achieved
if the NTM is used to automatically extract the features from the input
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MAE RMSE

Random Forest 3.97 7.31
Gradient Boosting 3.82 6.81
LSTM 4.97 7.05

Our NTM 3.73 5.37

Table 8: Comparison with state-of-the-art methods on PHM20 dataset, including the first
two methods from [40] and the results obtained by the LSTM-based model (based on [13]).

series. In particular, on both the C-MAPSS and the PHM20 dataset a lower
estimation error is observed when compared to a popular LSTM-based model.
Nonetheless, a superior accuracy may not be the only factor which needs to
be taken into account when implementing a RUL estimation system.

Training times and size of the dataset. In a scenario in which the
historical data form a sizable dataset, the NTM may require a bigger time
investment to perform the training. As an example, on a system with a
NVIDIA RTX A5000, an i7-9700K, and 32GB of RAM, training the NTM
on the PHM20 dataset takes around 1 hour (single run), whereas it takes 10
minutes for the LSTM-based model. This is mainly due to the availability
of a CUDNN implementation for the LSTM, which uses low level routines to
reduce the running time of each operation. Conversely, the implementation of
the NTM relies on higher level tools, making it slower. Nonetheless, the NTM
and the LSTM share similar primitives, therefore a CUDNN implementation
for the NTM is theoretically possible and may reduce the gap. With the
current implementation, learning from very big datasets by means of a NTM-
based system may become far too resource-consuming.

Low latency scenario. Industrial systems may need to predict the RUL
with a negligible latency. In a similar scenario, the NTM may not be optimal.
In fact, on the same system as before, the NTM estimates the RUL in around
55 ms (tested on 200 sequences of length 70), whereas the LSTM takes around
3 ms. As before, this is due to the usage of high level tools for the NTM,
and it may be alleviated by changing implementation. Nonetheless, at the
current state, if the RUL estimation system needs to perform a prediction
with a really low delay (near real-time), then a LSTM-based implementation
is preferable although with an inferior accuracy.

4.7. Summary of the main results
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To ease the reading of the experimental section, the main results and
major takeaways are summarized here:

• the NTM achieves lower estimation error than the LSTM, while also
using fewer learnable parameters (hence, a smaller memory footprint);

• a longer temporal context is beneficial for the NTM, whereas the pre-
diction accuracy of the LSTM worsens as the sequences become longer;

• the piece-wise degradation function commonly used to label the CMAPSS
dataset limits the predictions made by the model, which becomes un-
able to predict high RUL values at testing time;

• the NTM performs better than approaches following a similar architec-
ture, especially when multiple fault conditions affect the measurements;

• the simple architecture proposed in this paper competes with state-of-
the-art approaches which use additional optimization steps and more
complex or deeper architectures;

• it takes longer to train the NTM, when compared to the LSTM;

• the NTM provides a prediction with a longer delay than the LSTM.

5. Conclusions and future work

In this paper, the Neural Turing Machines are thoroughly analyzed for
the Remaining Useful Life estimation problem. The advantages provided
by having access to the additional memory are confirmed by an extensive
experimental section which shows that the NTM can automatically extract
useful features directly from the raw sensor measurements, obtaining better
performance than MLP-, CNN-, and LSTM-based solutions: these perfor-
mance are observed in terms of absolute estimation error, but also in three
relative directions, that is parameter efficiency (fewer learnable parameters),
memory efficiency (lesser memory footprint), and better usage of temporal
context (longer sequences provide useful information to the NTM, whereas
for the LSTM this does not hold). These results are empirically confirmed
on two public datasets: the widely used C-MAPSS dataset [6] provided by
NASA, and the recently released PHM Society 2020 Data Challenge [9]. The
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evidences also suggest that the NTM outperforms the LSTM when multiple
operating conditions and fault modes affect the sensor measurements: this
may be strategic in industrial settings, since complex machinery contain sev-
eral deteriorating components. Moreover, since these faults may require more
time to develop, being able to learn from a longer temporal context may be
fundamental to catch them before they happen, therefore raising further in-
terest towards the NTM. Furthermore, even though in this work the NTM is
used as the only feature extraction component, it can still achieve compara-
ble and even competitive results to state-of-the-art techniques using ensemble
of models, additional pretraining, etc. Therefore, combining the NTM with
other state-of-the-art techniques may lead to additional improvements.

There is still room for research. In the experimental results, it is shown
that the labeling function [32] commonly used for this task may not be the
best choice and can highly affect the final performance. This is especially
crucial for the datasets where the time series in the testing set have a higher
groundtruth RUL than the maximum value used during the labeling step
and therefore used to perform the training process. To address this, the
community is actively seeking new solutions (e.g. Elsheikh et al. [15]) but,
to date, no definitive solutions are found. Finally, some limitations of the
NTM were also highlighted and contextualized to industrial scenarios, leaving
further space for extensions and future works.
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